server_test / app.py
gouravbhadraDev's picture
Update app.py
d15392d verified
raw
history blame
5.89 kB
'''
from fastapi import FastAPI, Query
from pydantic import BaseModel
import cloudscraper
from bs4 import BeautifulSoup
from transformers import pipeline
import torch
import re
import os
#os.environ["HF_HOME"] = "/home/user/huggingface"
#os.environ["TRANSFORMERS_CACHE"] = "/home/user/huggingface"
app = FastAPI()
class ThreadResponse(BaseModel):
question: str
replies: list[str]
def clean_text(text: str) -> str:
text = text.strip()
text = re.sub(r"\b\d+\s*likes?,?\s*\d*\s*replies?$", "", text, flags=re.IGNORECASE).strip()
return text
@app.get("/scrape", response_model=ThreadResponse)
def scrape(url: str = Query(...)):
scraper = cloudscraper.create_scraper()
response = scraper.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
comment_containers = soup.find_all('div', class_='post__content')
if comment_containers:
question = clean_text(comment_containers[0].get_text(strip=True, separator="\n"))
replies = [clean_text(comment.get_text(strip=True, separator="\n")) for comment in comment_containers[1:]]
return ThreadResponse(question=question, replies=replies)
return ThreadResponse(question="", replies=[])
MODEL_NAME = "microsoft/phi-2"
# Load the text-generation pipeline once at startup
text_generator = pipeline(
"text-generation",
model=MODEL_NAME,
trust_remote_code=True,
device=0 if torch.cuda.is_available() else -1, # GPU if available, else CPU
)
class PromptRequest(BaseModel):
prompt: str
@app.post("/generate")
async def generate_text(request: PromptRequest):
# The model expects a string prompt, so pass request.prompt directly
outputs = text_generator(
request.prompt,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True,
num_return_sequences=1,
)
generated_text = outputs[0]['generated_text']
# Optional: parse reasoning and content if your model uses special tags like </think>
if "</think>" in generated_text:
reasoning_content = generated_text.split("</think>")[0].strip()
content = generated_text.split("</think>")[1].strip()
else:
reasoning_content = ""
content = generated_text.strip()
return {
"reasoning_content": reasoning_content,
"generated_text": content
}
'''
from fastapi import FastAPI, Query
from pydantic import BaseModel
import cloudscraper
from bs4 import BeautifulSoup
from transformers import T5Tokenizer, T5ForConditionalGeneration
import torch
import re
app = FastAPI()
# --- Data Models ---
class ThreadResponse(BaseModel):
question: str
replies: list[str]
class PromptRequest(BaseModel):
prompt: str
class GenerateResponse(BaseModel):
reasoning_content: str
generated_text: str
# --- Utility Functions ---
def clean_text(text: str) -> str:
text = text.strip()
text = re.sub(r"\b\d+\s*likes?,?\s*\d*\s*replies?$", "", text, flags=re.IGNORECASE).strip()
return text
# --- Scraping Endpoint ---
@app.get("/scrape", response_model=ThreadResponse)
def scrape(url: str = Query(...)):
scraper = cloudscraper.create_scraper()
response = scraper.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
comment_containers = soup.find_all('div', class_='post__content')
if comment_containers:
question = clean_text(comment_containers[0].get_text(strip=True, separator="\n"))
replies = [clean_text(comment.get_text(strip=True, separator="\n")) for comment in comment_containers[1:]]
return ThreadResponse(question=question, replies=replies)
return ThreadResponse(question="", replies=[])
# --- Load T5-Small Model and Tokenizer ---
tokenizer = T5Tokenizer.from_pretrained("google/t5-small")
model = T5ForConditionalGeneration.from_pretrained("google/t5-small")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# --- Core Generation Function Using T5 Prompting ---
def generate_text_with_t5(prompt: str) -> (str, str):
"""
Accepts a prompt string that includes the T5 task prefix (e.g. "summarize: ..."),
generates output text, and optionally extracts reasoning if present.
Returns a tuple (reasoning_content, generated_text).
"""
# Tokenize input prompt with truncation to max 512 tokens
inputs = tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True).to(device)
# Generate output tokens with beam search for quality
outputs = model.generate(
inputs,
max_length=512,
num_beams=4,
repetition_penalty=2.5,
length_penalty=1.0,
early_stopping=True,
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Optional: parse reasoning if your prompt/model uses a special separator like </think>
if "</think>" in generated_text:
reasoning_content, content = generated_text.split("</think>", 1)
reasoning_content = reasoning_content.strip()
content = content.strip()
else:
reasoning_content = ""
content = generated_text.strip()
return reasoning_content, content
# --- /generate Endpoint Using T5 Prompting ---
@app.post("/generate", response_model=GenerateResponse)
async def generate(request: PromptRequest):
"""
Accepts a prompt string from frontend, which should include the T5 task prefix,
e.g. "summarize: {text to summarize}" or "translate English to German: {text}".
Returns generated text and optional reasoning content.
"""
reasoning_content, generated_text = generate_text_with_t5(request.prompt)
return GenerateResponse(reasoning_content=reasoning_content, generated_text=generated_text)