Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from fastapi import FastAPI, Query
|
2 |
from pydantic import BaseModel
|
3 |
import cloudscraper
|
@@ -74,4 +75,111 @@ async def generate_text(request: PromptRequest):
|
|
74 |
return {
|
75 |
"reasoning_content": reasoning_content,
|
76 |
"generated_text": content
|
77 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
from fastapi import FastAPI, Query
|
3 |
from pydantic import BaseModel
|
4 |
import cloudscraper
|
|
|
75 |
return {
|
76 |
"reasoning_content": reasoning_content,
|
77 |
"generated_text": content
|
78 |
+
}
|
79 |
+
|
80 |
+
'''
|
81 |
+
|
82 |
+
from fastapi import FastAPI, Query
|
83 |
+
from pydantic import BaseModel
|
84 |
+
import cloudscraper
|
85 |
+
from bs4 import BeautifulSoup
|
86 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
87 |
+
import torch
|
88 |
+
import re
|
89 |
+
|
90 |
+
app = FastAPI()
|
91 |
+
|
92 |
+
# --- Data Models ---
|
93 |
+
|
94 |
+
class ThreadResponse(BaseModel):
|
95 |
+
question: str
|
96 |
+
replies: list[str]
|
97 |
+
|
98 |
+
class PromptRequest(BaseModel):
|
99 |
+
prompt: str
|
100 |
+
|
101 |
+
class GenerateResponse(BaseModel):
|
102 |
+
reasoning_content: str
|
103 |
+
generated_text: str
|
104 |
+
|
105 |
+
|
106 |
+
# --- Utility Functions ---
|
107 |
+
|
108 |
+
def clean_text(text: str) -> str:
|
109 |
+
text = text.strip()
|
110 |
+
text = re.sub(r"\b\d+\s*likes?,?\s*\d*\s*replies?$", "", text, flags=re.IGNORECASE).strip()
|
111 |
+
return text
|
112 |
+
|
113 |
+
|
114 |
+
# --- Scraping Endpoint ---
|
115 |
+
|
116 |
+
@app.get("/scrape", response_model=ThreadResponse)
|
117 |
+
def scrape(url: str = Query(...)):
|
118 |
+
scraper = cloudscraper.create_scraper()
|
119 |
+
response = scraper.get(url)
|
120 |
+
|
121 |
+
if response.status_code == 200:
|
122 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
123 |
+
comment_containers = soup.find_all('div', class_='post__content')
|
124 |
+
|
125 |
+
if comment_containers:
|
126 |
+
question = clean_text(comment_containers[0].get_text(strip=True, separator="\n"))
|
127 |
+
replies = [clean_text(comment.get_text(strip=True, separator="\n")) for comment in comment_containers[1:]]
|
128 |
+
return ThreadResponse(question=question, replies=replies)
|
129 |
+
return ThreadResponse(question="", replies=[])
|
130 |
+
|
131 |
+
|
132 |
+
# --- Load T5-Small Model and Tokenizer ---
|
133 |
+
|
134 |
+
tokenizer = T5Tokenizer.from_pretrained("google/t5-small")
|
135 |
+
model = T5ForConditionalGeneration.from_pretrained("google/t5-small")
|
136 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
137 |
+
model = model.to(device)
|
138 |
+
|
139 |
+
|
140 |
+
# --- Core Generation Function Using T5 Prompting ---
|
141 |
+
|
142 |
+
def generate_text_with_t5(prompt: str) -> (str, str):
|
143 |
+
"""
|
144 |
+
Accepts a prompt string that includes the T5 task prefix (e.g. "summarize: ..."),
|
145 |
+
generates output text, and optionally extracts reasoning if present.
|
146 |
+
Returns a tuple (reasoning_content, generated_text).
|
147 |
+
"""
|
148 |
+
# Tokenize input prompt with truncation to max 512 tokens
|
149 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True).to(device)
|
150 |
+
|
151 |
+
# Generate output tokens with beam search for quality
|
152 |
+
outputs = model.generate(
|
153 |
+
inputs,
|
154 |
+
max_length=512,
|
155 |
+
num_beams=4,
|
156 |
+
repetition_penalty=2.5,
|
157 |
+
length_penalty=1.0,
|
158 |
+
early_stopping=True,
|
159 |
+
)
|
160 |
+
|
161 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
162 |
+
|
163 |
+
# Optional: parse reasoning if your prompt/model uses a special separator like </think>
|
164 |
+
if "</think>" in generated_text:
|
165 |
+
reasoning_content, content = generated_text.split("</think>", 1)
|
166 |
+
reasoning_content = reasoning_content.strip()
|
167 |
+
content = content.strip()
|
168 |
+
else:
|
169 |
+
reasoning_content = ""
|
170 |
+
content = generated_text.strip()
|
171 |
+
|
172 |
+
return reasoning_content, content
|
173 |
+
|
174 |
+
|
175 |
+
# --- /generate Endpoint Using T5 Prompting ---
|
176 |
+
|
177 |
+
@app.post("/generate", response_model=GenerateResponse)
|
178 |
+
async def generate(request: PromptRequest):
|
179 |
+
"""
|
180 |
+
Accepts a prompt string from frontend, which should include the T5 task prefix,
|
181 |
+
e.g. "summarize: {text to summarize}" or "translate English to German: {text}".
|
182 |
+
Returns generated text and optional reasoning content.
|
183 |
+
"""
|
184 |
+
reasoning_content, generated_text = generate_text_with_t5(request.prompt)
|
185 |
+
return GenerateResponse(reasoning_content=reasoning_content, generated_text=generated_text)
|