Spaces:
Running
Running
from fastapi import FastAPI, Query | |
from pydantic import BaseModel | |
import cloudscraper | |
from bs4 import BeautifulSoup | |
from transformers import pipeline | |
import torch | |
import re | |
import os | |
#os.environ["HF_HOME"] = "/home/user/huggingface" | |
#os.environ["TRANSFORMERS_CACHE"] = "/home/user/huggingface" | |
app = FastAPI() | |
class ThreadResponse(BaseModel): | |
question: str | |
replies: list[str] | |
def clean_text(text: str) -> str: | |
text = text.strip() | |
text = re.sub(r"\b\d+\s*likes?,?\s*\d*\s*replies?$", "", text, flags=re.IGNORECASE).strip() | |
return text | |
def scrape(url: str = Query(...)): | |
scraper = cloudscraper.create_scraper() | |
response = scraper.get(url) | |
if response.status_code == 200: | |
soup = BeautifulSoup(response.content, 'html.parser') | |
comment_containers = soup.find_all('div', class_='post__content') | |
if comment_containers: | |
question = clean_text(comment_containers[0].get_text(strip=True, separator="\n")) | |
replies = [clean_text(comment.get_text(strip=True, separator="\n")) for comment in comment_containers[1:]] | |
return ThreadResponse(question=question, replies=replies) | |
return ThreadResponse(question="", replies=[]) | |
MODEL_NAME = "deepseek-ai/DeepSeek-R1" | |
# Load the pipeline once at startup with device auto-mapping | |
text_generator = pipeline( | |
"text-generation", | |
model=MODEL_NAME, | |
trust_remote_code=True, | |
device=0 if torch.cuda.is_available() else -1, | |
) | |
class PromptRequest(BaseModel): | |
prompt: str | |
async def generate_text(request: PromptRequest): | |
# Prepare messages as expected by the model pipeline | |
messages = [{"role": "user", "content": request.prompt}] | |
# Call the pipeline with messages | |
outputs = text_generator(messages) | |
# The pipeline returns a list of dicts with 'generated_text' | |
generated_text = outputs[0]['generated_text'] | |
# Optional: parse reasoning and content if your model uses special tags like </think> | |
if "</think>" in generated_text: | |
reasoning_content = generated_text.split("</think>")[0].strip() | |
content = generated_text.split("</think>")[1].strip() | |
else: | |
reasoning_content = "" | |
content = generated_text.strip() | |
return { | |
"reasoning_content": reasoning_content, | |
"generated_text": content | |
} |