File size: 2,402 Bytes
6c0215b
 
 
 
8b03c54
812d4f6
6c0215b
042861c
 
c11a3a8
 
6c0215b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e95583
6c0215b
8b03c54
 
6e95583
8b03c54
6e95583
8b03c54
 
6c0215b
 
 
 
 
 
6e95583
 
 
 
 
 
 
 
6c0215b
6e95583
 
 
 
6c0215b
 
6e95583
6c0215b
 
 
 
6e95583
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from fastapi import FastAPI, Query
from pydantic import BaseModel
import cloudscraper
from bs4 import BeautifulSoup
from transformers import pipeline
import torch
import re
import os

#os.environ["HF_HOME"] = "/home/user/huggingface"
#os.environ["TRANSFORMERS_CACHE"] = "/home/user/huggingface"

app = FastAPI()

class ThreadResponse(BaseModel):
    question: str
    replies: list[str]

def clean_text(text: str) -> str:
    text = text.strip()
    text = re.sub(r"\b\d+\s*likes?,?\s*\d*\s*replies?$", "", text, flags=re.IGNORECASE).strip()
    return text

@app.get("/scrape", response_model=ThreadResponse)
def scrape(url: str = Query(...)):
    scraper = cloudscraper.create_scraper()
    response = scraper.get(url)

    if response.status_code == 200:
        soup = BeautifulSoup(response.content, 'html.parser')
        comment_containers = soup.find_all('div', class_='post__content')

        if comment_containers:
            question = clean_text(comment_containers[0].get_text(strip=True, separator="\n"))
            replies = [clean_text(comment.get_text(strip=True, separator="\n")) for comment in comment_containers[1:]]
            return ThreadResponse(question=question, replies=replies)
    return ThreadResponse(question="", replies=[])

MODEL_NAME = "deepseek-ai/DeepSeek-R1"

# Load the pipeline once at startup with device auto-mapping
text_generator = pipeline(
    "text-generation",
    model=MODEL_NAME,
    trust_remote_code=True,
    device=0 if torch.cuda.is_available() else -1,
)

class PromptRequest(BaseModel):
    prompt: str

@app.post("/generate")
async def generate_text(request: PromptRequest):
    # Prepare messages as expected by the model pipeline
    messages = [{"role": "user", "content": request.prompt}]
    
    # Call the pipeline with messages
    outputs = text_generator(messages)
    
    # The pipeline returns a list of dicts with 'generated_text'
    generated_text = outputs[0]['generated_text']

    # Optional: parse reasoning and content if your model uses special tags like </think>
    if "</think>" in generated_text:
        reasoning_content = generated_text.split("</think>")[0].strip()
        content = generated_text.split("</think>")[1].strip()
    else:
        reasoning_content = ""
        content = generated_text.strip()

    return {
        "reasoning_content": reasoning_content,
        "generated_text": content
    }