File size: 11,795 Bytes
d15392d
6c0215b
 
 
 
8b03c54
812d4f6
6c0215b
042861c
 
c11a3a8
 
6c0215b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd64d36
6c0215b
ef5f658
8b03c54
6e95583
8b03c54
6e95583
ef5f658
8b03c54
6c0215b
 
 
 
 
 
ef5f658
 
 
 
 
 
 
 
 
6e95583
 
6c0215b
6e95583
 
 
 
6c0215b
 
6e95583
6c0215b
 
 
 
d15392d
 
 
 
effce56
d15392d
 
 
e9f3a9a
d15392d
 
39eaf4a
 
 
c945e1b
d5939d1
d15392d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b2e268
 
 
 
 
 
 
 
 
 
 
d15392d
 
 
 
 
 
 
 
 
 
d61b7ff
d15392d
 
 
 
d61b7ff
 
d15392d
 
 
 
 
 
 
d61b7ff
d15392d
d61b7ff
 
 
d15392d
d61b7ff
 
 
d15392d
d61b7ff
 
 
 
 
e9f3a9a
 
 
 
 
a0b62ab
 
 
 
e9f3a9a
ad67d60
 
 
 
 
e9f3a9a
d61b7ff
 
 
 
 
 
ad10382
d61b7ff
 
 
 
 
 
 
d15392d
04f3b88
 
 
 
 
d15392d
d61b7ff
 
 
d15392d
 
 
 
 
 
 
d61b7ff
d15392d
 
 
d61b7ff
d15392d
d61b7ff
d15392d
d61b7ff
d15392d
e9f3a9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0b62ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e237568
ad67d60
 
 
f138f18
 
e237568
f138f18
ad67d60
 
 
 
 
 
 
e237568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad67d60
e9f3a9a
f138f18
d61b7ff
 
 
ad67d60
d61b7ff
 
 
 
 
e9f3a9a
 
ad67d60
 
 
 
d61b7ff
39eaf4a
d15392d
d61b7ff
39eaf4a
e9f3a9a
a0b62ab
39eaf4a
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
'''
from fastapi import FastAPI, Query
from pydantic import BaseModel
import cloudscraper
from bs4 import BeautifulSoup
from transformers import pipeline
import torch
import re
import os

#os.environ["HF_HOME"] = "/home/user/huggingface"
#os.environ["TRANSFORMERS_CACHE"] = "/home/user/huggingface"

app = FastAPI()

class ThreadResponse(BaseModel):
    question: str
    replies: list[str]

def clean_text(text: str) -> str:
    text = text.strip()
    text = re.sub(r"\b\d+\s*likes?,?\s*\d*\s*replies?$", "", text, flags=re.IGNORECASE).strip()
    return text

@app.get("/scrape", response_model=ThreadResponse)
def scrape(url: str = Query(...)):
    scraper = cloudscraper.create_scraper()
    response = scraper.get(url)

    if response.status_code == 200:
        soup = BeautifulSoup(response.content, 'html.parser')
        comment_containers = soup.find_all('div', class_='post__content')

        if comment_containers:
            question = clean_text(comment_containers[0].get_text(strip=True, separator="\n"))
            replies = [clean_text(comment.get_text(strip=True, separator="\n")) for comment in comment_containers[1:]]
            return ThreadResponse(question=question, replies=replies)
    return ThreadResponse(question="", replies=[])

MODEL_NAME = "microsoft/phi-2"

# Load the text-generation pipeline once at startup
text_generator = pipeline(
    "text-generation",
    model=MODEL_NAME,
    trust_remote_code=True,
    device=0 if torch.cuda.is_available() else -1,  # GPU if available, else CPU
)

class PromptRequest(BaseModel):
    prompt: str

@app.post("/generate")
async def generate_text(request: PromptRequest):
    # The model expects a string prompt, so pass request.prompt directly
    outputs = text_generator(
        request.prompt,
        max_new_tokens=512,
        temperature=0.7,
        top_p=0.9,
        do_sample=True,
        num_return_sequences=1,
    )
    
    generated_text = outputs[0]['generated_text']

    # Optional: parse reasoning and content if your model uses special tags like </think>
    if "</think>" in generated_text:
        reasoning_content = generated_text.split("</think>")[0].strip()
        content = generated_text.split("</think>")[1].strip()
    else:
        reasoning_content = ""
        content = generated_text.strip()

    return {
        "reasoning_content": reasoning_content,
        "generated_text": content
    }

'''

from fastapi import FastAPI, Query, Path
from pydantic import BaseModel
import cloudscraper
from bs4 import BeautifulSoup
from transformers import AutoTokenizer, AutoModelForCausalLM, T5Tokenizer, T5ForConditionalGeneration, PegasusTokenizer, PegasusForConditionalGeneration
import torch
import re
from fastapi.responses import JSONResponse
from fastapi.requests import Request
from fastapi import status
from typing import List, Dict, Optional
from llama_cpp import Llama

app = FastAPI()

# --- Data Models ---

class ThreadResponse(BaseModel):
    question: str
    replies: list[str]

class PromptRequest(BaseModel):
    prompt: str

class GenerateResponse(BaseModel):
    reasoning_content: str
    generated_text: str

# New model for summarization request
class SummarizeRequest(BaseModel):
    replies: List[str]
    task: str  # expecting "summarisation"

# New model for summarization response
class SummarizeResponse(BaseModel):
    individual_summaries: Dict[int, Dict[str, str]]  # {index: {"reasoning": str, "summary": str}}
    combined_reasoning: str
    combined_summary: str

# --- Utility Functions ---

def clean_text(text: str) -> str:
    text = text.strip()
    text = re.sub(r"\b\d+\s*likes?,?\s*\d*\s*replies?$", "", text, flags=re.IGNORECASE).strip()
    return text

# --- Scraping Endpoint ---

@app.get("/scrape", response_model=ThreadResponse)
def scrape(url: str):
    scraper = cloudscraper.create_scraper()
    response = scraper.get(url)

    if response.status_code == 200:
        soup = BeautifulSoup(response.content, "html.parser")
        comment_containers = soup.find_all("div", class_="post__content")

        if comment_containers:
            question = clean_text(comment_containers[0].get_text(strip=True, separator="\n"))
            replies = [clean_text(comment.get_text(strip=True, separator="\n")) for comment in comment_containers[1:]]
            return ThreadResponse(question=question, replies=replies)
    return ThreadResponse(question="", replies=[])

# --- Load DeepSeek-R1-Distill-Qwen-1.5B Model & Tokenizer ---

deepseek_model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
deepseek_tokenizer = AutoTokenizer.from_pretrained(deepseek_model_name)
deepseek_model = AutoModelForCausalLM.from_pretrained(deepseek_model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
deepseek_model = deepseek_model.to(device)

# --- Load T5-Large Model & Tokenizer ---

t5_model_name = "google-t5/t5-large"
t5_tokenizer = T5Tokenizer.from_pretrained(t5_model_name)
t5_model = T5ForConditionalGeneration.from_pretrained(t5_model_name)
t5_model = t5_model.to(device)

pegasus_model_name = "google/pegasus-large"
pegasus_tokenizer = PegasusTokenizer.from_pretrained(pegasus_model_name)
pegasus_model = PegasusForConditionalGeneration.from_pretrained(pegasus_model_name)
pegasus_model = pegasus_model.to(device)

qwen3_model_name = "Qwen/Qwen3-0.6B"
qwen3_tokenizer = AutoTokenizer.from_pretrained(qwen3_model_name)
qwen3_model = AutoModelForCausalLM.from_pretrained(qwen3_model_name)
qwen3_model = qwen3_model.to(device)

qwen3_gguf_llm = Llama.from_pretrained(
    repo_id="unsloth/Qwen3-0.6B-GGUF",
    filename="Qwen3-0.6B-BF16.gguf",
)


# --- Generation Functions ---

def generate_deepseek(prompt: str) -> (str, str):
    inputs = deepseek_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
    outputs = deepseek_model.generate(
        **inputs,
        max_new_tokens=512,
        temperature=0.7,
        top_p=0.9,
        do_sample=True,
        num_return_sequences=1,
        pad_token_id=deepseek_tokenizer.eos_token_id,
    )
    generated_text = deepseek_tokenizer.decode(outputs[0], skip_special_tokens=True)

    if "</think>" in generated_text:
        reasoning_content, content = generated_text.split("</think>", 1)
        return reasoning_content.strip(), content.strip()
    else:
        return "", generated_text.strip()

def generate_t5(prompt: str) -> (str, str):
    inputs = t5_tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True).to(device)
    outputs = t5_model.generate(
        inputs,
        max_length=512,
        num_beams=4,
        repetition_penalty=2.5,
        length_penalty=1.0,
        early_stopping=True,
    )
    generated_text = t5_tokenizer.decode(outputs[0], skip_special_tokens=True)

    if "</think>" in generated_text:
        reasoning_content, content = generated_text.split("</think>", 1)
        return reasoning_content.strip(), content.strip()
    else:
        return "", generated_text.strip()

# --- API Endpoints ---

def generate_pegasus(prompt: str) -> (str, str):
    # Pegasus expects raw text input (no prefix needed)
    inputs = pegasus_tokenizer(
        prompt,
        return_tensors="pt",
        truncation=True,
        max_length=1024,
    ).to(device)

    outputs = pegasus_model.generate(
        **inputs,
        max_new_tokens=150,
        num_beams=4,
        length_penalty=2.0,
        early_stopping=True,
    )
    generated_text = pegasus_tokenizer.decode(outputs[0], skip_special_tokens=True)

    # Pegasus does not use <think> tags, so no reasoning extraction
    return "", generated_text.strip()

def generate_qwen3(prompt: str) -> (str, str):
    inputs = qwen3_tokenizer(
        prompt,
        return_tensors="pt",
        truncation=True,
        max_length=1024,
    ).to(device)

    outputs = qwen3_model.generate(
        **inputs,
        max_new_tokens=512,
        temperature=0.7,
        top_p=0.9,
        do_sample=True,
        num_return_sequences=1,
        pad_token_id=qwen3_tokenizer.eos_token_id,
    )

    generated_text = qwen3_tokenizer.decode(outputs[0], skip_special_tokens=True)

    if "</think>" in generated_text:
        reasoning_content, content = generated_text.split("</think>", 1)
        return reasoning_content.strip(), content.strip()
    else:
        return "", generated_text.strip()

def generate_qwen3_gguf(prompt: str, max_tokens: int = 256) -> (str, str):
    messages = [
        {"role": "user", "content": prompt}
    ]
    response = qwen3_gguf_llm.create_chat_completion(
        messages=messages,
        max_tokens=max_tokens,
    )
    generated_text = response['choices'][0]['message']['content']
    if "</think>" in generated_text:
        reasoning_content, content = generated_text.split("</think>", 1)
        return reasoning_content.strip() + "</think>", content.strip()
    else:
        return "", generated_text.strip()

# --- New summarization endpoint ---

@app.post("/summarize_thread", response_model=SummarizeResponse)
async def summarize_thread(request: SummarizeRequest):
    if request.task.lower() != "summarisation":
        return JSONResponse(
            status_code=400,
            content={"error": "Unsupported task. Only 'summarisation' is supported."}
        )

    individual_summaries = {}
    combined_reasonings = []
    combined_summaries = []

    # Summarize each reply individually
    for idx, reply in enumerate(request.replies):
        reasoning, summary = generate_qwen3_gguf(reply, max_tokens=256)
        individual_summaries[idx] = {
            "reasoning": reasoning,
            "summary": summary
        }
        if reasoning:
            combined_reasonings.append(reasoning)
        combined_summaries.append(summary)

    # Combine all individual summaries into one text
    combined_summary_text = " ".join(combined_summaries)

    # Recursively summarize combined summary if too long (optional)
    # Here, we summarize combined summary to get final reasoning and summary
    final_reasoning, final_summary = generate_qwen3_gguf(combined_summary_text, max_tokens=256)

    # Append final reasoning to combined reasonings
    if final_reasoning:
        combined_reasonings.append(final_reasoning)

    return SummarizeResponse(
        individual_summaries=individual_summaries,
        combined_reasoning="\n\n".join(combined_reasonings).strip(),
        combined_summary=final_summary.strip()
    )



@app.post("/generate/{model_name}", response_model=GenerateResponse)
async def generate(
    request: PromptRequest,
    model_name: str = Path(..., description="Model to use: 'deepseekr1-qwen', 't5-large', 'pegasus-large', 'qwen3-0.6b-hf', or 'qwen3-0.6b-gguf'")
):
    if model_name == "deepseekr1-qwen":
        reasoning, text = generate_deepseek(request.prompt)
    elif model_name == "t5-large":
        reasoning, text = generate_t5(request.prompt)
    elif model_name == "pegasus-large":
        reasoning, text = generate_pegasus(request.prompt)
    elif model_name == "qwen3-0.6b-hf":
        reasoning, text = generate_qwen3_hf(request.prompt)
    elif model_name == "qwen3-0.6b-gguf":
        reasoning, text = generate_qwen3_gguf(request.prompt)
    else:
        return GenerateResponse(reasoning_content="", generated_text=f"Error: Unknown model '{model_name}'.")

    return GenerateResponse(reasoning_content=reasoning, generated_text=text)



# --- Global Exception Handler ---

@app.exception_handler(Exception)
async def global_exception_handler(request: Request, exc: Exception):
    print(f"Exception: {exc}")
    return JSONResponse(
        status_code=status.HTTP_200_OK,
        content={
            "reasoning_content": "",
            "generated_text": f"Error: {str(exc)}"
        }
    )