File size: 6,937 Bytes
d15392d
6c0215b
 
 
 
8b03c54
812d4f6
6c0215b
042861c
 
c11a3a8
 
6c0215b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd64d36
6c0215b
ef5f658
8b03c54
6e95583
8b03c54
6e95583
ef5f658
8b03c54
6c0215b
 
 
 
 
 
ef5f658
 
 
 
 
 
 
 
 
6e95583
 
6c0215b
6e95583
 
 
 
6c0215b
 
6e95583
6c0215b
 
 
 
d15392d
 
 
 
effce56
d15392d
 
 
0f38b7b
d15392d
 
39eaf4a
 
 
d15392d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61b7ff
d15392d
 
 
 
d61b7ff
 
d15392d
 
 
 
 
 
 
d61b7ff
d15392d
d61b7ff
 
 
d15392d
d61b7ff
 
 
d15392d
d61b7ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d15392d
04f3b88
 
 
 
 
d15392d
d61b7ff
 
 
d15392d
 
 
 
 
 
 
d61b7ff
d15392d
 
 
d61b7ff
d15392d
d61b7ff
d15392d
d61b7ff
d15392d
d61b7ff
 
 
 
 
 
 
 
 
 
39eaf4a
d15392d
d61b7ff
39eaf4a
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
'''
from fastapi import FastAPI, Query
from pydantic import BaseModel
import cloudscraper
from bs4 import BeautifulSoup
from transformers import pipeline
import torch
import re
import os

#os.environ["HF_HOME"] = "/home/user/huggingface"
#os.environ["TRANSFORMERS_CACHE"] = "/home/user/huggingface"

app = FastAPI()

class ThreadResponse(BaseModel):
    question: str
    replies: list[str]

def clean_text(text: str) -> str:
    text = text.strip()
    text = re.sub(r"\b\d+\s*likes?,?\s*\d*\s*replies?$", "", text, flags=re.IGNORECASE).strip()
    return text

@app.get("/scrape", response_model=ThreadResponse)
def scrape(url: str = Query(...)):
    scraper = cloudscraper.create_scraper()
    response = scraper.get(url)

    if response.status_code == 200:
        soup = BeautifulSoup(response.content, 'html.parser')
        comment_containers = soup.find_all('div', class_='post__content')

        if comment_containers:
            question = clean_text(comment_containers[0].get_text(strip=True, separator="\n"))
            replies = [clean_text(comment.get_text(strip=True, separator="\n")) for comment in comment_containers[1:]]
            return ThreadResponse(question=question, replies=replies)
    return ThreadResponse(question="", replies=[])

MODEL_NAME = "microsoft/phi-2"

# Load the text-generation pipeline once at startup
text_generator = pipeline(
    "text-generation",
    model=MODEL_NAME,
    trust_remote_code=True,
    device=0 if torch.cuda.is_available() else -1,  # GPU if available, else CPU
)

class PromptRequest(BaseModel):
    prompt: str

@app.post("/generate")
async def generate_text(request: PromptRequest):
    # The model expects a string prompt, so pass request.prompt directly
    outputs = text_generator(
        request.prompt,
        max_new_tokens=512,
        temperature=0.7,
        top_p=0.9,
        do_sample=True,
        num_return_sequences=1,
    )
    
    generated_text = outputs[0]['generated_text']

    # Optional: parse reasoning and content if your model uses special tags like </think>
    if "</think>" in generated_text:
        reasoning_content = generated_text.split("</think>")[0].strip()
        content = generated_text.split("</think>")[1].strip()
    else:
        reasoning_content = ""
        content = generated_text.strip()

    return {
        "reasoning_content": reasoning_content,
        "generated_text": content
    }

'''

from fastapi import FastAPI, Query, Path
from pydantic import BaseModel
import cloudscraper
from bs4 import BeautifulSoup
from transformers import AutoTokenizer, AutoModelForCausalLM, T5Tokenizer, T5ForConditionalGeneration
import torch
import re
from fastapi.responses import JSONResponse
from fastapi.requests import Request
from fastapi import status

app = FastAPI()

# --- Data Models ---

class ThreadResponse(BaseModel):
    question: str
    replies: list[str]

class PromptRequest(BaseModel):
    prompt: str

class GenerateResponse(BaseModel):
    reasoning_content: str
    generated_text: str

# --- Utility Functions ---

def clean_text(text: str) -> str:
    text = text.strip()
    text = re.sub(r"\b\d+\s*likes?,?\s*\d*\s*replies?$", "", text, flags=re.IGNORECASE).strip()
    return text

# --- Scraping Endpoint ---

@app.get("/scrape", response_model=ThreadResponse)
def scrape(url: str):
    scraper = cloudscraper.create_scraper()
    response = scraper.get(url)

    if response.status_code == 200:
        soup = BeautifulSoup(response.content, "html.parser")
        comment_containers = soup.find_all("div", class_="post__content")

        if comment_containers:
            question = clean_text(comment_containers[0].get_text(strip=True, separator="\n"))
            replies = [clean_text(comment.get_text(strip=True, separator="\n")) for comment in comment_containers[1:]]
            return ThreadResponse(question=question, replies=replies)
    return ThreadResponse(question="", replies=[])

# --- Load DeepSeek-R1-Distill-Qwen-1.5B Model & Tokenizer ---

deepseek_model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
deepseek_tokenizer = AutoTokenizer.from_pretrained(deepseek_model_name)
deepseek_model = AutoModelForCausalLM.from_pretrained(deepseek_model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
deepseek_model = deepseek_model.to(device)

# --- Load T5-Large Model & Tokenizer ---

t5_model_name = "google-t5/t5-large"
t5_tokenizer = T5Tokenizer.from_pretrained(t5_model_name)
t5_model = T5ForConditionalGeneration.from_pretrained(t5_model_name)
t5_model = t5_model.to(device)

# --- Generation Functions ---

def generate_deepseek(prompt: str) -> (str, str):
    inputs = deepseek_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
    outputs = deepseek_model.generate(
        **inputs,
        max_length=512,
        temperature=0.7,
        top_p=0.9,
        do_sample=True,
        num_return_sequences=1,
        pad_token_id=deepseek_tokenizer.eos_token_id,
    )
    generated_text = deepseek_tokenizer.decode(outputs[0], skip_special_tokens=True)

    if "</think>" in generated_text:
        reasoning_content, content = generated_text.split("</think>", 1)
        return reasoning_content.strip(), content.strip()
    else:
        return "", generated_text.strip()

def generate_t5(prompt: str) -> (str, str):
    inputs = t5_tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True).to(device)
    outputs = t5_model.generate(
        inputs,
        max_length=512,
        num_beams=4,
        repetition_penalty=2.5,
        length_penalty=1.0,
        early_stopping=True,
    )
    generated_text = t5_tokenizer.decode(outputs[0], skip_special_tokens=True)

    if "</think>" in generated_text:
        reasoning_content, content = generated_text.split("</think>", 1)
        return reasoning_content.strip(), content.strip()
    else:
        return "", generated_text.strip()

# --- API Endpoints ---

@app.post("/generate/{model_name}", response_model=GenerateResponse)
async def generate(
    request: PromptRequest,
    model_name: str = Path(..., description="Model to use: 'deepseekr1-qwen' or 't5-large'")
):
    if model_name == "deepseekr1-qwen":
        reasoning, text = generate_deepseek(request.prompt)
    elif model_name == "t5-large":
        reasoning, text = generate_t5(request.prompt)
    else:
        return GenerateResponse(reasoning_content="", generated_text=f"Error: Unknown model '{model_name}'.")

    return GenerateResponse(reasoning_content=reasoning, generated_text=text)

# --- Global Exception Handler ---

@app.exception_handler(Exception)
async def global_exception_handler(request: Request, exc: Exception):
    print(f"Exception: {exc}")
    return JSONResponse(
        status_code=status.HTTP_200_OK,
        content={
            "reasoning_content": "",
            "generated_text": f"Error: {str(exc)}"
        }
    )