Spaces:
Running
Running
File size: 6,937 Bytes
d15392d 6c0215b 8b03c54 812d4f6 6c0215b 042861c c11a3a8 6c0215b fd64d36 6c0215b ef5f658 8b03c54 6e95583 8b03c54 6e95583 ef5f658 8b03c54 6c0215b ef5f658 6e95583 6c0215b 6e95583 6c0215b 6e95583 6c0215b d15392d effce56 d15392d 0f38b7b d15392d 39eaf4a d15392d d61b7ff d15392d d61b7ff d15392d d61b7ff d15392d d61b7ff d15392d d61b7ff d15392d d61b7ff d15392d 04f3b88 d15392d d61b7ff d15392d d61b7ff d15392d d61b7ff d15392d d61b7ff d15392d d61b7ff d15392d d61b7ff 39eaf4a d15392d d61b7ff 39eaf4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
'''
from fastapi import FastAPI, Query
from pydantic import BaseModel
import cloudscraper
from bs4 import BeautifulSoup
from transformers import pipeline
import torch
import re
import os
#os.environ["HF_HOME"] = "/home/user/huggingface"
#os.environ["TRANSFORMERS_CACHE"] = "/home/user/huggingface"
app = FastAPI()
class ThreadResponse(BaseModel):
question: str
replies: list[str]
def clean_text(text: str) -> str:
text = text.strip()
text = re.sub(r"\b\d+\s*likes?,?\s*\d*\s*replies?$", "", text, flags=re.IGNORECASE).strip()
return text
@app.get("/scrape", response_model=ThreadResponse)
def scrape(url: str = Query(...)):
scraper = cloudscraper.create_scraper()
response = scraper.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
comment_containers = soup.find_all('div', class_='post__content')
if comment_containers:
question = clean_text(comment_containers[0].get_text(strip=True, separator="\n"))
replies = [clean_text(comment.get_text(strip=True, separator="\n")) for comment in comment_containers[1:]]
return ThreadResponse(question=question, replies=replies)
return ThreadResponse(question="", replies=[])
MODEL_NAME = "microsoft/phi-2"
# Load the text-generation pipeline once at startup
text_generator = pipeline(
"text-generation",
model=MODEL_NAME,
trust_remote_code=True,
device=0 if torch.cuda.is_available() else -1, # GPU if available, else CPU
)
class PromptRequest(BaseModel):
prompt: str
@app.post("/generate")
async def generate_text(request: PromptRequest):
# The model expects a string prompt, so pass request.prompt directly
outputs = text_generator(
request.prompt,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True,
num_return_sequences=1,
)
generated_text = outputs[0]['generated_text']
# Optional: parse reasoning and content if your model uses special tags like </think>
if "</think>" in generated_text:
reasoning_content = generated_text.split("</think>")[0].strip()
content = generated_text.split("</think>")[1].strip()
else:
reasoning_content = ""
content = generated_text.strip()
return {
"reasoning_content": reasoning_content,
"generated_text": content
}
'''
from fastapi import FastAPI, Query, Path
from pydantic import BaseModel
import cloudscraper
from bs4 import BeautifulSoup
from transformers import AutoTokenizer, AutoModelForCausalLM, T5Tokenizer, T5ForConditionalGeneration
import torch
import re
from fastapi.responses import JSONResponse
from fastapi.requests import Request
from fastapi import status
app = FastAPI()
# --- Data Models ---
class ThreadResponse(BaseModel):
question: str
replies: list[str]
class PromptRequest(BaseModel):
prompt: str
class GenerateResponse(BaseModel):
reasoning_content: str
generated_text: str
# --- Utility Functions ---
def clean_text(text: str) -> str:
text = text.strip()
text = re.sub(r"\b\d+\s*likes?,?\s*\d*\s*replies?$", "", text, flags=re.IGNORECASE).strip()
return text
# --- Scraping Endpoint ---
@app.get("/scrape", response_model=ThreadResponse)
def scrape(url: str):
scraper = cloudscraper.create_scraper()
response = scraper.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, "html.parser")
comment_containers = soup.find_all("div", class_="post__content")
if comment_containers:
question = clean_text(comment_containers[0].get_text(strip=True, separator="\n"))
replies = [clean_text(comment.get_text(strip=True, separator="\n")) for comment in comment_containers[1:]]
return ThreadResponse(question=question, replies=replies)
return ThreadResponse(question="", replies=[])
# --- Load DeepSeek-R1-Distill-Qwen-1.5B Model & Tokenizer ---
deepseek_model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
deepseek_tokenizer = AutoTokenizer.from_pretrained(deepseek_model_name)
deepseek_model = AutoModelForCausalLM.from_pretrained(deepseek_model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
deepseek_model = deepseek_model.to(device)
# --- Load T5-Large Model & Tokenizer ---
t5_model_name = "google-t5/t5-large"
t5_tokenizer = T5Tokenizer.from_pretrained(t5_model_name)
t5_model = T5ForConditionalGeneration.from_pretrained(t5_model_name)
t5_model = t5_model.to(device)
# --- Generation Functions ---
def generate_deepseek(prompt: str) -> (str, str):
inputs = deepseek_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
outputs = deepseek_model.generate(
**inputs,
max_length=512,
temperature=0.7,
top_p=0.9,
do_sample=True,
num_return_sequences=1,
pad_token_id=deepseek_tokenizer.eos_token_id,
)
generated_text = deepseek_tokenizer.decode(outputs[0], skip_special_tokens=True)
if "</think>" in generated_text:
reasoning_content, content = generated_text.split("</think>", 1)
return reasoning_content.strip(), content.strip()
else:
return "", generated_text.strip()
def generate_t5(prompt: str) -> (str, str):
inputs = t5_tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True).to(device)
outputs = t5_model.generate(
inputs,
max_length=512,
num_beams=4,
repetition_penalty=2.5,
length_penalty=1.0,
early_stopping=True,
)
generated_text = t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
if "</think>" in generated_text:
reasoning_content, content = generated_text.split("</think>", 1)
return reasoning_content.strip(), content.strip()
else:
return "", generated_text.strip()
# --- API Endpoints ---
@app.post("/generate/{model_name}", response_model=GenerateResponse)
async def generate(
request: PromptRequest,
model_name: str = Path(..., description="Model to use: 'deepseekr1-qwen' or 't5-large'")
):
if model_name == "deepseekr1-qwen":
reasoning, text = generate_deepseek(request.prompt)
elif model_name == "t5-large":
reasoning, text = generate_t5(request.prompt)
else:
return GenerateResponse(reasoning_content="", generated_text=f"Error: Unknown model '{model_name}'.")
return GenerateResponse(reasoning_content=reasoning, generated_text=text)
# --- Global Exception Handler ---
@app.exception_handler(Exception)
async def global_exception_handler(request: Request, exc: Exception):
print(f"Exception: {exc}")
return JSONResponse(
status_code=status.HTTP_200_OK,
content={
"reasoning_content": "",
"generated_text": f"Error: {str(exc)}"
}
)
|