Spaces:
Running
Running
File size: 18,337 Bytes
6035bfe a8eb718 5dfb15d 9470e9c a8eb718 6035bfe a8eb718 6035bfe 10e03de 6035bfe 10e03de a8eb718 db3cf6b 6035bfe 10e03de 6035bfe 9470e9c 6035bfe 4e8ad25 6035bfe 2f8b595 4e8ea60 f00b06e e0713c0 4e8ea60 10e03de f00b06e 4e8ad25 f00b06e 4e8ea60 10e03de f00b06e 4e8ea60 10e03de 10a5dab 4e8ea60 10e03de 10a5dab 4e8ea60 10e03de 10a5dab 4e8ea60 9696775 10e03de 2f8b595 9696775 4e8ea60 f00b06e 10e03de 4e8ea60 10e03de 4e8ea60 9696775 9470e9c 9696775 10e03de 9696775 10e03de 9696775 4e8ea60 9696775 a8eb718 9696775 a8eb718 9696775 a8eb718 9696775 a8eb718 9696775 a8eb718 10e03de 4e8ea60 9696775 10e03de a8eb718 9696775 a8eb718 10e03de a8eb718 9696775 10e03de a8eb718 10e03de a8eb718 9696775 a8eb718 10e03de a8eb718 9696775 10e03de 9696775 10e03de a8eb718 9696775 a8eb718 10e03de a8eb718 9696775 2a0f996 10e03de 2a0f996 eac18b7 2c18e26 10e03de 2c18e26 9696775 eac18b7 9696775 eac18b7 9696775 a8eb718 9696775 a8eb718 4e8ea60 9696775 a8eb718 4e8ea60 a8eb718 4e8ea60 a8eb718 eac18b7 a8eb718 4e8ea60 9696775 2f8b595 a8eb718 10e03de a8eb718 2f8b595 4e8ea60 9696775 a8eb718 9696775 10e03de 06dc656 10e03de 06dc656 2f8b595 e2baeda 6035bfe 65ee007 5c58372 9696775 5c58372 65ee007 9696775 5c58372 9696775 10e03de 6035bfe 9696775 10e03de 9696775 10e03de 9696775 892de37 10e03de a8eb718 10e03de eac18b7 2c18e26 a8eb718 9696775 10e03de 9696775 6035bfe 10e03de 6035bfe 9696775 4e8ea60 9696775 eac18b7 9696775 5c58372 9bbcc80 9696775 9bbcc80 c292539 10e03de 81ba805 4dd03cf 81ba805 9696775 81ba805 9696775 4e8ea60 9696775 81ba805 58bb0eb b557bec 0370aef c9c6fdf 4e8ea60 c9c6fdf 4e8ea60 c9c6fdf 4e8ea60 c9c6fdf 5c58372 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import os
import gradio as gr
from gradio import ChatMessage
from typing import Iterator, List, Dict, Tuple, Any
import google.generativeai as genai
from huggingface_hub import HfApi
import requests
import re
import traceback
# HuggingFace API key for space analysis
HF_TOKEN = os.getenv("HF_TOKEN")
hf_api = HfApi(token=HF_TOKEN)
# Gemini 2.0 Flash Thinking model API key and client (for LLM)
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)
model = genai.GenerativeModel("gemini-2.0-flash-thinking-exp-01-21")
def get_headers():
if not HF_TOKEN:
raise ValueError("Hugging Face token not found in environment variables")
return {"Authorization": f"Bearer {HF_TOKEN}"}
def get_file_content(space_id: str, file_path: str) -> str:
file_url = f"https://huggingface.co/spaces/{space_id}/raw/main/{file_path}"
try:
response = requests.get(file_url, headers=get_headers())
if response.status_code == 200:
return response.text
else:
return f"File not found or inaccessible: {file_path}"
except requests.RequestException:
return f"Error fetching content for file: {file_path}"
def get_space_structure(space_id: str) -> Dict:
try:
files = hf_api.list_repo_files(repo_id=space_id, repo_type="space")
tree = {"type": "directory", "path": "", "name": space_id, "children": []}
for file in files:
path_parts = file.split('/')
current = tree
for i, part in enumerate(path_parts):
if i == len(path_parts) - 1: # file
current["children"].append({"type": "file", "path": file, "name": part})
else:
found = False
for child in current["children"]:
if child["type"] == "directory" and child["name"] == part:
current = child
found = True
break
if not found:
new_dir = {"type": "directory", "path": '/'.join(path_parts[:i+1]), "name": part, "children": []}
current["children"].append(new_dir)
current = new_dir
return tree
except Exception as e:
print(f"Error in get_space_structure: {str(e)}")
return {"error": f"API request error: {str(e)}"}
def format_tree_structure(tree_data: Dict, indent: str = "") -> str:
if "error" in tree_data:
return tree_data["error"]
formatted = f"{indent}{'π' if tree_data.get('type') == 'directory' else 'π'} {tree_data.get('name', 'Unknown')}\n"
if tree_data.get("type") == "directory":
for child in sorted(tree_data.get("children", []), key=lambda x: (x.get("type", "") != "directory", x.get("name", ""))):
formatted += format_tree_structure(child, indent + " ")
return formatted
def adjust_lines_for_code(code_content: str, min_lines: int = 10, max_lines: int = 100) -> int:
num_lines = len(code_content.split('\n'))
return min(max(num_lines, min_lines), max_lines)
def analyze_space(url: str, progress=gr.Progress()):
try:
space_id = url.split('spaces/')[-1]
if not re.match(r'^[\w.-]+/[\w.-]+$', space_id):
raise ValueError(f"Invalid Space ID format: {space_id}")
progress(0.1, desc="Analyzing file structure...")
tree_structure = get_space_structure(space_id)
if "error" in tree_structure:
raise ValueError(tree_structure["error"])
tree_view = format_tree_structure(tree_structure)
progress(0.3, desc="Fetching app.py content...")
app_content = get_file_content(space_id, "app.py")
progress(0.5, desc="Summarizing code...")
summary = summarize_code(app_content)
progress(0.7, desc="Analyzing code...")
analysis = analyze_code(app_content)
progress(0.9, desc="Generating usage instructions...")
usage = explain_usage(app_content)
lines_for_app_py = adjust_lines_for_code(app_content)
progress(1.0, desc="Complete")
return app_content, tree_view, tree_structure, space_id, summary, analysis, usage, lines_for_app_py
except Exception as e:
print(f"Error in analyze_space: {str(e)}")
print(traceback.format_exc())
return f"An error occurred: {str(e)}", "", None, "", "", "", "", 10
# --------------------------------------------------
# Gemini 2.0 Flash Thinking model (LLM) functions
# --------------------------------------------------
from gradio import ChatMessage
def format_chat_history(messages: List[ChatMessage]) -> List[Dict]:
"""
Convert a list of ChatMessages to a format that the Gemini model can understand.
(Skip messages with 'Thinking' metadata)
"""
formatted = []
for m in messages:
if hasattr(m, "metadata") and m.metadata: # Skip 'Thinking' messages
continue
role = "assistant" if m.role == "assistant" else "user"
formatted.append({"role": role, "parts": [m.content or ""]})
return formatted
def gemini_chat_completion(system_message: str, user_message: str, max_tokens: int = 200, temperature: float = 0.7) -> str:
init_msgs = [
ChatMessage(role="system", content=system_message),
ChatMessage(role="user", content=user_message)
]
chat_history = format_chat_history(init_msgs)
chat = model.start_chat(history=chat_history)
final = ""
try:
for chunk in chat.send_message(user_message, stream=True):
parts = chunk.candidates[0].content.parts
if len(parts) == 2:
final += parts[1].text
else:
final += parts[0].text
return final.strip()
except Exception as e:
return f"Error calling LLM: {str(e)}"
def summarize_code(app_content: str):
system_msg = "You are an AI assistant that analyzes and summarizes Python code. Please summarize the provided code in no more than 3 lines."
user_msg = f"Please summarize the following Python code in no more than 3 lines:\n\n{app_content}"
try:
return gemini_chat_completion(system_msg, user_msg, max_tokens=200, temperature=0.7)
except Exception as e:
return f"Error generating summary: {str(e)}"
def analyze_code(app_content: str):
system_msg = (
"You are an AI assistant that analyzes Python code. Please analyze the provided code in terms of its service utility and application with respect to the following aspects:\n"
"A. Background and Necessity\n"
"B. Functional Utility and Value\n"
"C. Key Features\n"
"D. Target Audience\n"
"E. Expected Impact\n"
"Please also compare with existing and similar projects. Output in Markdown format."
)
user_msg = f"Please analyze the following Python code:\n\n{app_content}"
try:
return gemini_chat_completion(system_msg, user_msg, max_tokens=1000, temperature=0.7)
except Exception as e:
return f"Error generating analysis: {str(e)}"
def explain_usage(app_content: str):
system_msg = (
"You are an AI assistant that analyzes Python code to explain its usage. Based on the provided code, please describe how to use it as if you were viewing the interface. Output in Markdown format."
)
user_msg = f"Please explain how to use the following Python code:\n\n{app_content}"
try:
return gemini_chat_completion(system_msg, user_msg, max_tokens=800, temperature=0.7)
except Exception as e:
return f"Error generating usage instructions: {str(e)}"
def stream_gemini_response(user_message: str, conversation_state: List[ChatMessage]) -> Iterator[List[ChatMessage]]:
"""
Send a streaming request to Gemini.
If the user_message is empty, append a minimal guidance message from the assistant and yield.
"""
if not user_message.strip():
conversation_state.append(
ChatMessage(
role="assistant",
content="No input provided. Please enter a question!"
)
)
yield conversation_state
return
print(f"\n=== New Request ===\nUser message: {user_message}")
chat_history = format_chat_history(conversation_state)
chat = model.start_chat(history=chat_history)
response = chat.send_message(user_message, stream=True)
thought_buffer = ""
response_buffer = ""
thinking_complete = False
conversation_state.append(
ChatMessage(
role="assistant",
content="",
metadata={"title": "βοΈ Thinking: *The thoughts produced by the model are experimental"}
)
)
try:
for chunk in response:
parts = chunk.candidates[0].content.parts
current_chunk = parts[0].text
if len(parts) == 2 and not thinking_complete:
thought_buffer += current_chunk
print(f"\n=== Complete Thought ===\n{thought_buffer}")
conversation_state[-1] = ChatMessage(
role="assistant",
content=thought_buffer,
metadata={"title": "βοΈ Thinking: *The thoughts produced by the model are experimental"}
)
yield conversation_state
response_buffer = parts[1].text
print(f"\n=== Starting Response ===\n{response_buffer}")
conversation_state.append(
ChatMessage(role="assistant", content=response_buffer)
)
thinking_complete = True
elif thinking_complete:
response_buffer += current_chunk
print(f"\n=== Response Chunk ===\n{current_chunk}")
conversation_state[-1] = ChatMessage(
role="assistant",
content=response_buffer
)
else:
thought_buffer += current_chunk
print(f"\n=== Thinking Chunk ===\n{current_chunk}")
conversation_state[-1] = ChatMessage(
role="assistant",
content=thought_buffer,
metadata={"title": "βοΈ Thinking: *The thoughts produced by the model are experimental"}
)
yield conversation_state
print(f"\n=== Final Response ===\n{response_buffer}")
except Exception as e:
print(f"\n=== Error ===\n{str(e)}")
conversation_state.append(
ChatMessage(
role="assistant",
content=f"I apologize, but encountered an error: {str(e)}"
)
)
yield conversation_state
def convert_for_messages_format(messages: List[ChatMessage]) -> List[Dict[str, str]]:
"""
Convert a list of ChatMessages to the format [{"role": "assistant"/"user", "content": "..."}].
"""
output = []
for msg in messages:
output.append({"role": msg.role, "content": msg.content})
return output
def user_submit_message(msg: str, conversation_state: List[ChatMessage]):
conversation_state.append(ChatMessage(role="user", content=msg))
return "", conversation_state
def respond_wrapper(message: str, conversation_state: List[ChatMessage], max_tokens, temperature, top_p):
# Get the last user message
last_user_message = ""
for msg in reversed(conversation_state):
if msg.role == "user":
last_user_message = msg.content
break
# Generate response based on the last user message
for updated_messages in stream_gemini_response(last_user_message, conversation_state):
yield "", convert_for_messages_format(updated_messages)
def create_ui():
try:
css = """
body {
background: linear-gradient(to right, #f0f2f5, #ffffff);
font-family: 'Segoe UI', sans-serif;
}
.gradio-container {
border-radius: 15px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
footer {visibility: hidden;}
.tabitem-header {
font-weight: bold;
color: #3b3b3b;
}
.gradio-markdown h1 {
color: #ff6f61;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# π MOUSE: Space Research Thinking")
with gr.Tabs():
with gr.TabItem("π Analysis"):
with gr.Row():
with gr.Column():
url_input = gr.Textbox(label="π HuggingFace Space URL", placeholder="e.g.: https://huggingface.co/spaces/username/space-name")
analyze_button = gr.Button("Start Analysis π", variant="primary")
summary_output = gr.Markdown(label="π Code Summary")
analysis_output = gr.Markdown(label="π Code Analysis")
usage_output = gr.Markdown(label="π Usage Instructions")
tree_view_output = gr.Textbox(label="π File Structure", lines=20)
with gr.Column():
code_tabs = gr.Tabs()
with code_tabs:
with gr.TabItem("app.py"):
app_py_content = gr.Code(
language="python",
label="app.py",
lines=50
)
with gr.TabItem("requirements.txt"):
requirements_content = gr.Textbox(
label="requirements.txt",
lines=50
)
with gr.TabItem("π€ AI Code Chat"):
gr.Markdown("## π¬ Enter an example or paste your source code and ask your question!")
chatbot = gr.Chatbot(
label="Chat Window",
height=400,
type="messages"
)
msg = gr.Textbox(
label="Enter your message",
placeholder="Type your message here..."
)
max_tokens = gr.Slider(
minimum=1, maximum=8000,
value=4000, label="Max Tokens",
visible=False
)
temperature = gr.Slider(
minimum=0, maximum=1,
value=0.7, label="Temperature",
visible=False
)
top_p = gr.Slider(
minimum=0, maximum=1,
value=0.9, label="Top P",
visible=False
)
examples = [
["Explain detailed usage instructions in over 4000 tokens"],
["Generate 20 FAQs in over 4000 tokens"],
["Describe technical differentiators and strengths in over 4000 tokens"],
["Generate innovative ideas for patent applications in over 4000 tokens"],
["Write an academic paper in over 4000 tokens"],
["Continue your answer"]
]
gr.Examples(examples, inputs=msg)
conversation_state = gr.State([])
msg.submit(
user_submit_message,
inputs=[msg, conversation_state],
outputs=[msg, conversation_state],
queue=False
).then(
respond_wrapper,
inputs=[msg, conversation_state, max_tokens, temperature, top_p],
outputs=[msg, chatbot],
)
with gr.TabItem("β Recommended Best"):
gr.Markdown(
"Discover recommended HuggingFace Spaces [here](https://huggingface.co/spaces/openfree/Korean-Leaderboard)."
)
# Analysis tab logic
space_id_state = gr.State()
tree_structure_state = gr.State()
app_py_content_lines = gr.State()
analyze_button.click(
analyze_space,
inputs=[url_input],
outputs=[
app_py_content,
tree_view_output,
tree_structure_state,
space_id_state,
summary_output,
analysis_output,
usage_output,
app_py_content_lines
]
).then(
lambda space_id: get_file_content(space_id, "requirements.txt"),
inputs=[space_id_state],
outputs=[requirements_content]
).then(
lambda lines: gr.update(lines=lines),
inputs=[app_py_content_lines],
outputs=[app_py_content]
)
return demo
except Exception as e:
print(f"Error in create_ui: {str(e)}")
print(traceback.format_exc())
raise
if __name__ == "__main__":
try:
print("Starting HuggingFace Space Analyzer...")
demo = create_ui()
print("UI created successfully.")
print("Configuring Gradio queue...")
demo.queue()
print("Gradio queue configured.")
print("Launching Gradio app...")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True,
show_api=False
)
print("Gradio app launched successfully.")
except Exception as e:
print(f"Error in main: {str(e)}")
print("Detailed error information:")
print(traceback.format_exc())
raise
|