TalentLensAI / utils /screening.py
Johnny
updated resume_format > template, hide sidebar, download Spacy model with spacy_loader.py
102e49d
# utils/screening.py
from .parser import parse_resume, extract_email, summarize_resume
from .hybrid_extractor import extract_resume_sections
from .spacy_loader import get_nlp, is_spacy_available
from config import supabase, embedding_model, client
from fuzzywuzzy import fuzz
from sentence_transformers import util
import streamlit as st
# Load spaCy model for keyword extraction with fallback
nlp = get_nlp()
from sklearn.feature_extraction.text import TfidfVectorizer
def extract_keywords(text, top_n=10):
"""
Extracts top keywords from the job description using spaCy and TF-IDF.
"""
if not text.strip():
return []
# Use spaCy for keyword extraction if available, otherwise use simple word extraction
if nlp and is_spacy_available():
doc = nlp(text.lower())
keywords = [t.text for t in doc if t.pos_ in {"NOUN", "PROPN", "VERB", "ADJ"} and not t.is_stop]
else:
# Fallback to simple word extraction without POS tagging
import re
words = re.findall(r'\b[a-zA-Z]{3,}\b', text.lower())
# Filter out common stop words manually
stop_words = {'the', 'and', 'for', 'are', 'but', 'not', 'you', 'all', 'can', 'had', 'her', 'was', 'one', 'our', 'out', 'day', 'get', 'has', 'him', 'his', 'how', 'man', 'new', 'now', 'old', 'see', 'two', 'way', 'who', 'its', 'did', 'yes', 'she', 'may', 'say', 'use', 'her', 'any', 'top', 'own', 'too', 'off', 'far', 'set', 'why', 'ask', 'men', 'run', 'end', 'put', 'lot', 'big', 'eye', 'try', 'yet', 'car', 'eat', 'job', 'sit', 'cut', 'let', 'got', 'buy', 'win', 'box', 'hit', 'add', 'oil', 'six', 'war', 'age', 'boy', 'due', 'bed', 'hot', 'cup', 'cut', 'gun', 'kid', 'red', 'sea', 'art', 'air', 'low', 'pay', 'act', 'bit', 'bad', 'law', 'dog', 'key', 'bit', 'arm', 'tax', 'gas'}
keywords = [word for word in words if word not in stop_words]
if not keywords:
return []
try:
tfidf = TfidfVectorizer(stop_words="english", ngram_range=(1, 2))
matrix = tfidf.fit_transform([" ".join(keywords)])
scores = matrix.toarray()[0]
features = tfidf.get_feature_names_out()
ranked = sorted(zip(features, scores), key=lambda x: x[1], reverse=True)
return [kw for kw, _ in ranked[:top_n]]
except ValueError:
return []
def filter_resumes_by_keywords(resumes, job_description, min_keyword_match=2):
"""
Filters resumes by keyword match using fuzzy logic.
"""
job_keywords = extract_keywords(job_description)
if len(job_keywords) < min_keyword_match:
st.warning("⚠️ Job description too short or missing for keyword filtering.")
return resumes, []
filtered, removed = [], []
for resume in resumes:
matched = {
keyword for keyword in job_keywords
if any(fuzz.partial_ratio(keyword, word) > 80 for word in resume["resume"].lower().split())
}
if len(matched) >= min_keyword_match:
filtered.append(resume)
else:
removed.append(resume["name"])
return filtered, removed
def create_enhanced_summary(extracted_data, resume_text):
"""
Create an enhanced summary from structured extraction data.
Falls back to old summarization if extraction fails.
"""
try:
name = extracted_data.get('Name', 'Candidate')
summary_text = extracted_data.get('Summary', '')
skills = extracted_data.get('Skills', [])
experiences = extracted_data.get('StructuredExperiences', [])
education = extracted_data.get('Education', [])
# Build enhanced summary
parts = []
# Add name and current title
if experiences:
current_job = experiences[0] # Most recent job
parts.append(f"{name} - {current_job.get('title', 'Professional')}")
else:
parts.append(f"{name} - Professional")
# Add experience summary
if summary_text:
parts.append(summary_text[:200] + "..." if len(summary_text) > 200 else summary_text)
# Add key skills (top 5)
if skills:
top_skills = skills[:5]
parts.append(f"Key Skills: {', '.join(top_skills)}")
# Add experience count
if experiences:
parts.append(f"Experience: {len(experiences)} positions")
# Add education
if education:
parts.append(f"Education: {education[0]}")
return " | ".join(parts)
except Exception as e:
print(f"❌ Error creating enhanced summary: {e}")
# Fallback to old summarization
from .parser import summarize_resume
return summarize_resume(resume_text)
def score_candidate(resume_text, job_description):
"""
Computes cosine similarity between resume and job description using embeddings.
"""
try:
resume_vec = embedding_model.encode(resume_text, convert_to_tensor=True)
job_vec = embedding_model.encode(job_description, convert_to_tensor=True)
score = util.pytorch_cos_sim(resume_vec, job_vec).item()
return round(score, 4)
except Exception as e:
print(f"Error computing similarity: {e}")
return 0
def evaluate_resumes(uploaded_files, job_description, min_keyword_match=2):
"""
Evaluate uploaded resumes and return shortlisted candidates with scores and summaries.
Uses the new hybrid extraction system with OpenAI as primary and HF Cloud as backup.
"""
candidates, removed_candidates = [], []
for pdf_file in uploaded_files:
try:
# Extract raw text
resume_text = parse_resume(pdf_file)
# Use new hybrid extraction system (OpenAI primary, HF Cloud backup)
extracted_data = extract_resume_sections(
resume_text,
prefer_ai=True,
use_openai=True, # Try OpenAI first
use_hf_cloud=True # Fallback to HF Cloud
)
# Get structured data
candidate_name = extracted_data.get('Name') or pdf_file.name.replace('.pdf', '')
email = extract_email(resume_text) # Keep existing email extraction
# Create enhanced summary from structured data
summary = create_enhanced_summary(extracted_data, resume_text)
# Score the candidate
score = score_candidate(resume_text, job_description)
if score < 0.20:
removed_candidates.append({
"name": candidate_name,
"reason": "Low confidence score (< 0.20)"
})
continue
candidates.append({
"name": candidate_name,
"resume": resume_text,
"score": score,
"email": email,
"summary": summary,
"structured_data": extracted_data # Include structured data for better processing
})
except Exception as e:
st.error(f"❌ Error processing {pdf_file.name}: {e}")
removed_candidates.append({
"name": pdf_file.name,
"reason": f"Processing error: {str(e)}"
})
continue
# πŸ”Ή Step 2: Filter candidates based on keyword matches
filtered_candidates, keyword_removed = filter_resumes_by_keywords(
candidates, job_description, min_keyword_match
)
# πŸ”Ή Step 3: Log removed candidates
for name in keyword_removed:
removed_candidates.append({"name": name, "reason": "Insufficient keyword matches"})
# πŸ”Ή Step 4: Ensure the final list is sorted by score and limit to top 5 candidates
shortlisted_candidates = sorted(filtered_candidates, key=lambda x: x["score"], reverse=True)[:5]
# πŸ”Ή Step 4.5: Store shortlisted candidates in Supabase
for candidate in shortlisted_candidates:
try:
store_in_supabase(
resume_text=candidate["resume"],
score=candidate["score"],
candidate_name=candidate["name"],
email=candidate["email"],
summary=candidate["summary"]
)
except Exception as e:
print(f"❌ Failed to store {candidate['name']} in Supabase: {e}")
# πŸ”Ή Step 5: Ensure return value is always a list
if not isinstance(shortlisted_candidates, list):
print("⚠️ ERROR: shortlisted_candidates is not a list! Returning empty list.")
return [], removed_candidates
return shortlisted_candidates, removed_candidates
def store_in_supabase(resume_text, score, candidate_name, email, summary):
"""
Saves candidate data to the Supabase table.
"""
data = {
"name": candidate_name,
"resume": resume_text,
"score": score or 0,
"email": email,
"summary": summary
}
return supabase.table("candidates").insert(data).execute()