File size: 9,121 Bytes
c2f9ec8
 
 
102e49d
c2f9ec8
 
 
 
 
102e49d
 
c2f9ec8
 
 
 
 
 
 
 
 
102e49d
 
 
 
 
 
 
 
 
 
 
c2f9ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# utils/screening.py
from .parser     import parse_resume, extract_email, summarize_resume
from .hybrid_extractor import extract_resume_sections
from .spacy_loader import get_nlp, is_spacy_available
from config      import supabase, embedding_model, client
from fuzzywuzzy import fuzz
from sentence_transformers import util
import streamlit as st

# Load spaCy model for keyword extraction with fallback
nlp = get_nlp()
from sklearn.feature_extraction.text import TfidfVectorizer

def extract_keywords(text, top_n=10):
    """
    Extracts top keywords from the job description using spaCy and TF-IDF.
    """
    if not text.strip():
        return []

    # Use spaCy for keyword extraction if available, otherwise use simple word extraction
    if nlp and is_spacy_available():
        doc = nlp(text.lower())
        keywords = [t.text for t in doc if t.pos_ in {"NOUN", "PROPN", "VERB", "ADJ"} and not t.is_stop]
    else:
        # Fallback to simple word extraction without POS tagging
        import re
        words = re.findall(r'\b[a-zA-Z]{3,}\b', text.lower())
        # Filter out common stop words manually
        stop_words = {'the', 'and', 'for', 'are', 'but', 'not', 'you', 'all', 'can', 'had', 'her', 'was', 'one', 'our', 'out', 'day', 'get', 'has', 'him', 'his', 'how', 'man', 'new', 'now', 'old', 'see', 'two', 'way', 'who', 'its', 'did', 'yes', 'she', 'may', 'say', 'use', 'her', 'any', 'top', 'own', 'too', 'off', 'far', 'set', 'why', 'ask', 'men', 'run', 'end', 'put', 'lot', 'big', 'eye', 'try', 'yet', 'car', 'eat', 'job', 'sit', 'cut', 'let', 'got', 'buy', 'win', 'box', 'hit', 'add', 'oil', 'six', 'war', 'age', 'boy', 'due', 'bed', 'hot', 'cup', 'cut', 'gun', 'kid', 'red', 'sea', 'art', 'air', 'low', 'pay', 'act', 'bit', 'bad', 'law', 'dog', 'key', 'bit', 'arm', 'tax', 'gas'}
        keywords = [word for word in words if word not in stop_words]

    if not keywords:
        return []

    try:
        tfidf = TfidfVectorizer(stop_words="english", ngram_range=(1, 2))
        matrix = tfidf.fit_transform([" ".join(keywords)])
        scores = matrix.toarray()[0]
        features = tfidf.get_feature_names_out()
        ranked = sorted(zip(features, scores), key=lambda x: x[1], reverse=True)

        return [kw for kw, _ in ranked[:top_n]]

    except ValueError:
        return []


def filter_resumes_by_keywords(resumes, job_description, min_keyword_match=2):
    """
    Filters resumes by keyword match using fuzzy logic.
    """
    job_keywords = extract_keywords(job_description)
    if len(job_keywords) < min_keyword_match:
        st.warning("โš ๏ธ Job description too short or missing for keyword filtering.")
        return resumes, []

    filtered, removed = [], []

    for resume in resumes:
        matched = {
            keyword for keyword in job_keywords
            if any(fuzz.partial_ratio(keyword, word) > 80 for word in resume["resume"].lower().split())
        }

        if len(matched) >= min_keyword_match:
            filtered.append(resume)
        else:
            removed.append(resume["name"])

    return filtered, removed


def create_enhanced_summary(extracted_data, resume_text):
    """
    Create an enhanced summary from structured extraction data.
    Falls back to old summarization if extraction fails.
    """
    try:
        name = extracted_data.get('Name', 'Candidate')
        summary_text = extracted_data.get('Summary', '')
        skills = extracted_data.get('Skills', [])
        experiences = extracted_data.get('StructuredExperiences', [])
        education = extracted_data.get('Education', [])
        
        # Build enhanced summary
        parts = []
        
        # Add name and current title
        if experiences:
            current_job = experiences[0]  # Most recent job
            parts.append(f"{name} - {current_job.get('title', 'Professional')}")
        else:
            parts.append(f"{name} - Professional")
        
        # Add experience summary
        if summary_text:
            parts.append(summary_text[:200] + "..." if len(summary_text) > 200 else summary_text)
        
        # Add key skills (top 5)
        if skills:
            top_skills = skills[:5]
            parts.append(f"Key Skills: {', '.join(top_skills)}")
        
        # Add experience count
        if experiences:
            parts.append(f"Experience: {len(experiences)} positions")
        
        # Add education
        if education:
            parts.append(f"Education: {education[0]}")
        
        return " | ".join(parts)
        
    except Exception as e:
        print(f"โŒ Error creating enhanced summary: {e}")
        # Fallback to old summarization
        from .parser import summarize_resume
        return summarize_resume(resume_text)

def score_candidate(resume_text, job_description):
    """
    Computes cosine similarity between resume and job description using embeddings.
    """
    try:
        resume_vec = embedding_model.encode(resume_text, convert_to_tensor=True)
        job_vec = embedding_model.encode(job_description, convert_to_tensor=True)
        score = util.pytorch_cos_sim(resume_vec, job_vec).item()
        return round(score, 4)
    except Exception as e:
        print(f"Error computing similarity: {e}")
        return 0
    
def evaluate_resumes(uploaded_files, job_description, min_keyword_match=2):
    """
    Evaluate uploaded resumes and return shortlisted candidates with scores and summaries.
    Uses the new hybrid extraction system with OpenAI as primary and HF Cloud as backup.
    """
    candidates, removed_candidates = [], []

    for pdf_file in uploaded_files:
        try:
            # Extract raw text
            resume_text = parse_resume(pdf_file)
            
            # Use new hybrid extraction system (OpenAI primary, HF Cloud backup)
            extracted_data = extract_resume_sections(
                resume_text, 
                prefer_ai=True, 
                use_openai=True,      # Try OpenAI first
                use_hf_cloud=True     # Fallback to HF Cloud
            )
            
            # Get structured data
            candidate_name = extracted_data.get('Name') or pdf_file.name.replace('.pdf', '')
            email = extract_email(resume_text)  # Keep existing email extraction
            
            # Create enhanced summary from structured data
            summary = create_enhanced_summary(extracted_data, resume_text)
            
            # Score the candidate
            score = score_candidate(resume_text, job_description)

            if score < 0.20:
                removed_candidates.append({
                    "name": candidate_name, 
                    "reason": "Low confidence score (< 0.20)"
                })
                continue

            candidates.append({
                "name": candidate_name,
                "resume": resume_text,
                "score": score,
                "email": email,
                "summary": summary,
                "structured_data": extracted_data  # Include structured data for better processing
            })
            
        except Exception as e:
            st.error(f"โŒ Error processing {pdf_file.name}: {e}")
            removed_candidates.append({
                "name": pdf_file.name, 
                "reason": f"Processing error: {str(e)}"
            })
            continue

    # ๐Ÿ”น Step 2: Filter candidates based on keyword matches
    filtered_candidates, keyword_removed = filter_resumes_by_keywords(
        candidates, job_description, min_keyword_match
    )
    
    # ๐Ÿ”น Step 3: Log removed candidates
    for name in keyword_removed:
        removed_candidates.append({"name": name, "reason": "Insufficient keyword matches"})
    
    # ๐Ÿ”น Step 4: Ensure the final list is sorted by score and limit to top 5 candidates
    shortlisted_candidates = sorted(filtered_candidates, key=lambda x: x["score"], reverse=True)[:5]
    
    # ๐Ÿ”น Step 4.5: Store shortlisted candidates in Supabase
    for candidate in shortlisted_candidates:
        try:
            store_in_supabase(
                resume_text=candidate["resume"],
                score=candidate["score"],
                candidate_name=candidate["name"],
                email=candidate["email"],
                summary=candidate["summary"]
            )
        except Exception as e:
            print(f"โŒ Failed to store {candidate['name']} in Supabase: {e}")

    # ๐Ÿ”น Step 5: Ensure return value is always a list
    if not isinstance(shortlisted_candidates, list):
        print("โš ๏ธ ERROR: shortlisted_candidates is not a list! Returning empty list.")
        return [], removed_candidates

    return shortlisted_candidates, removed_candidates

def store_in_supabase(resume_text, score, candidate_name, email, summary):
    """
    Saves candidate data to the Supabase table.
    """
    data = {
        "name": candidate_name,
        "resume": resume_text,
        "score": score or 0,
        "email": email,
        "summary": summary
    }

    return supabase.table("candidates").insert(data).execute()