SceneDreamer / terrain_generator.py
gabrielsemiceki9's picture
Upload 125 files
b72e09b verified
import numpy as np
from scipy.spatial import Voronoi
from skimage.draw import polygon
from PIL import Image
from noise import snoise3
from skimage import exposure
from scipy.interpolate import interp1d
import cv2
from scipy.ndimage import gaussian_filter
from scipy.ndimage import binary_dilation
from argparse import ArgumentParser
def save_height_map(height_map, file_name):
#input height map should be float, raw output of noise map
normalized_height_map = (((height_map - height_map.min()) / (height_map.max() - height_map.min()))*255).astype(np.uint8)
cv2.imwrite(file_name, normalized_height_map)
np.save(file_name[:-4] + '.npy', height_map)
def get_boundary(vor_map, size, kernel=1):
boundary_map = np.zeros_like(vor_map, dtype=bool)
n, m = vor_map.shape
clip = lambda x: max(0, min(size-1, x))
def check_for_mult(a):
b = a[0]
for i in range(len(a)-1):
if a[i] != b: return 1
return 0
for i in range(n):
for j in range(m):
boundary_map[i, j] = check_for_mult(vor_map[
clip(i-kernel):clip(i+kernel+1),
clip(j-kernel):clip(j+kernel+1),
].flatten())
return boundary_map
def histeq(img, alpha=1):
img_cdf, bin_centers = exposure.cumulative_distribution(img)
img_eq = np.interp(img, bin_centers, img_cdf)
img_eq = np.interp(img_eq, (0, 1), (-1, 1))
return alpha * img_eq + (1 - alpha) * img
def voronoi(points, size):
# Add points at edges to eliminate infinite ridges
edge_points = size*np.array([[-1, -1], [-1, 2], [2, -1], [2, 2]])
new_points = np.vstack([points, edge_points])
# Calculate Voronoi tessellation
vor = Voronoi(new_points)
return vor
def voronoi_map(vor, size):
# Calculate Voronoi map
vor_map = np.zeros((size, size), dtype=np.uint32)
for i, region in enumerate(vor.regions):
# Skip empty regions and infinte ridge regions
if len(region) == 0 or -1 in region: continue
# Get polygon vertices
x, y = np.array([vor.vertices[i][::-1] for i in region]).T
# Get pixels inside polygon
rr, cc = polygon(x, y)
# Remove pixels out of image bounds
in_box = np.where((0 <= rr) & (rr < size) & (0 <= cc) & (cc < size))
rr, cc = rr[in_box], cc[in_box]
# Paint image
vor_map[rr, cc] = i
return vor_map
# Lloyd's relaxation
def relax(points, size, k=10):
new_points = points.copy()
for _ in range(k):
vor = voronoi(new_points, size)
new_points = []
for i, region in enumerate(vor.regions):
if len(region) == 0 or -1 in region: continue
poly = np.array([vor.vertices[i] for i in region])
center = poly.mean(axis=0)
new_points.append(center)
new_points = np.array(new_points).clip(0, size)
return new_points
def noise_map(size, res, seed, octaves=1, persistence=0.5, lacunarity=2.0):
scale = size/res
return np.array([[
snoise3(
(x+0.1)/scale,
y/scale,
seed,
octaves=octaves,
persistence=persistence,
lacunarity=lacunarity
)
for x in range(size)]
for y in range(size)
])
def average_cells(vor, data):
"""Returns the average value of data inside every voronoi cell"""
size = vor.shape[0]
count = np.max(vor)+1
sum_ = np.zeros(count)
count = np.zeros(count)
for i in range(size):
for j in range(size):
p = vor[i, j]
count[p] += 1
sum_[p] += data[i, j]
average = sum_/ (count + 1e-3)
average[count==0] = 0
return average
def fill_cells(vor, data):
size = vor.shape[0]
image = np.zeros((size, size))
for i in range(size):
for j in range(size):
p = vor[i, j]
image[i, j] = data[p]
return image
def color_cells(vor, data, dtype=int):
size = vor.shape[0]
image = np.zeros((size, size, 3))
for i in range(size):
for j in range(size):
p = vor[i, j]
image[i, j] = data[p]
return image.astype(dtype)
def quantize(data, n):
bins = np.linspace(-1, 1, n+1)
return (np.digitize(data, bins) - 1).clip(0, n-1)
def bezier(x1, y1, x2, y2, a):
p1 = np.array([0, 0])
p2 = np.array([x1, y1])
p3 = np.array([x2, y2])
p4 = np.array([1, a])
return lambda t: ((1-t)**3 * p1 + 3*(1-t)**2*t * p2 + 3*(1-t)*t**2 * p3 + t**3 * p4)
def bezier_lut(x1, y1, x2, y2, a):
t = np.linspace(0, 1, 256)
f = bezier(x1, y1, x2, y2, a)
curve = np.array([f(t_) for t_ in t])
return interp1d(*curve.T)
def filter_map(h_map, smooth_h_map, x1, y1, x2, y2, a, b):
f = bezier_lut(x1, y1, x2, y2, a)
output_map = b*h_map + (1-b)*smooth_h_map
output_map = f(output_map.clip(0, 1))
return output_map
def filter_inbox(pts, size):
inidx = np.all(pts < size, axis=1)
return pts[inidx]
def generate_trees(n, size):
trees = np.random.randint(0, size-1, (n, 2))
trees = relax(trees, size, k=10).astype(np.uint32)
trees = filter_inbox(trees, size)
return trees
def place_trees(river_land_mask, adjusted_height_river_map, n, mask, size, a=0.5):
trees= generate_trees(n, size)
rr, cc = trees.T
output_trees = np.zeros((size, size), dtype=bool)
output_trees[rr, cc] = True
output_trees = output_trees*(mask>a)*river_land_mask*(adjusted_height_river_map<0.5)
output_trees = np.array(np.where(output_trees == 1))[::-1].T
return output_trees
def PCGGen(map_size, nbins = 256, seed = 3407):
biome_names = [
# sand and rock
"desert",
# grass gravel rock stone
"savanna", # mixed woodland and grassland
# trees flower
"tropical_woodland", # rainforest
# dirt grass gravel rock stone
"tundra", # no trees
# trees flower
"seasonal_forest",
# trees
"rainforest",
# trees
"temperate_forest",
# trees
"temperate_rainforest",
# snow rock tree
"boreal_forest" # taiga, snow forest
]
biome_colors = [
[255, 255, 178],
[184, 200, 98],
[188, 161, 53],
[190, 255, 242],
[106, 144, 38],
[33, 77, 41],
[86, 179, 106],
[34, 61, 53],
[35, 114, 94]
]
size = map_size
n = nbins
map_seed = seed
# start generation
points = np.random.randint(0, size, (514, 2))
points = relax(points, size, k=100)
vor = voronoi(points, size)
vor_map = voronoi_map(vor, size)
boundary_displacement = 8
boundary_noise = np.dstack([noise_map(size, 32, 200 + map_seed, octaves=8), noise_map(size, 32, 250 + map_seed, octaves=8)])
boundary_noise = np.indices((size, size)).T + boundary_displacement*boundary_noise
boundary_noise = boundary_noise.clip(0, size-1).astype(np.uint32)
blurred_vor_map = np.zeros_like(vor_map)
for x in range(size):
for y in range(size):
j, i = boundary_noise[x, y]
blurred_vor_map[x, y] = vor_map[i, j]
vor_map = blurred_vor_map
temperature_map = noise_map(size, 2, 10 + map_seed)
precipitation_map = noise_map(size, 2, 20 + map_seed)
uniform_temperature_map = histeq(temperature_map, alpha=0.33)
uniform_precipitation_map = histeq(precipitation_map, alpha=0.33)
temperature_map = uniform_temperature_map
precipitation_map = uniform_precipitation_map
temperature_cells = average_cells(vor_map, temperature_map)
precipitation_cells = average_cells(vor_map, precipitation_map)
quantize_temperature_cells = quantize(temperature_cells, n)
quantize_precipitation_cells = quantize(precipitation_cells, n)
quantize_temperature_map = fill_cells(vor_map, quantize_temperature_cells)
quantize_precipitation_map = fill_cells(vor_map, quantize_precipitation_cells)
temperature_cells = quantize_temperature_cells
precipitation_cells = quantize_precipitation_cells
temperature_map = quantize_temperature_map
precipitation_map = quantize_precipitation_map
im = np.array(Image.open("./assets/biome_image.png"))[:, :, :3]
im = cv2.resize(im, (256, 256))
biomes = np.zeros((256, 256))
for i, color in enumerate(biome_colors):
indices = np.where(np.all(im == color, axis=-1))
biomes[indices] = i
biomes = np.flip(biomes, axis=0).T
n = len(temperature_cells)
biome_cells = np.zeros(n, dtype=np.uint32)
for i in range(n):
temp, precip = temperature_cells[i], precipitation_cells[i]
biome_cells[i] = biomes[temp, precip]
biome_map = fill_cells(vor_map, biome_cells).astype(np.uint32)
biome_color_map = color_cells(biome_map, biome_colors)
height_map = noise_map(size, 4, 0 + map_seed, octaves=6, persistence=0.5, lacunarity=2)
land_mask = height_map > 0
smooth_height_map = noise_map(size, 4, 0 + map_seed, octaves=1, persistence=0.5, lacunarity=2)
biome_height_maps = [
# Desert
filter_map(height_map, smooth_height_map, 0.75, 0.2, 0.95, 0.2, 0.2, 0.5),
# Savanna
filter_map(height_map, smooth_height_map, 0.5, 0.1, 0.95, 0.1, 0.1, 0.2),
# Tropical Woodland
filter_map(height_map, smooth_height_map, 0.33, 0.33, 0.95, 0.1, 0.1, 0.75),
# Tundra
filter_map(height_map, smooth_height_map, 0.5, 1, 0.25, 1, 1, 1),
# Seasonal Forest
filter_map(height_map, smooth_height_map, 0.75, 0.5, 0.4, 0.4, 0.33, 0.2),
# Rainforest
filter_map(height_map, smooth_height_map, 0.5, 0.25, 0.66, 1, 1, 0.5),
# Temperate forest
filter_map(height_map, smooth_height_map, 0.75, 0.5, 0.4, 0.4, 0.33, 0.33),
# Temperate Rainforest
filter_map(height_map, smooth_height_map, 0.75, 0.5, 0.4, 0.4, 0.33, 0.33),
# Boreal
filter_map(height_map, smooth_height_map, 0.8, 0.1, 0.9, 0.05, 0.05, 0.1)
]
biome_count = len(biome_names)
biome_masks = np.zeros((biome_count, size, size))
for i in range(biome_count):
biome_masks[i, biome_map==i] = 1
biome_masks[i] = gaussian_filter(biome_masks[i], sigma=16)
# Remove ocean from masks
blurred_land_mask = land_mask
blurred_land_mask = binary_dilation(land_mask, iterations=32).astype(np.float64)
blurred_land_mask = gaussian_filter(blurred_land_mask, sigma=16)
# biome mask - [9, size, size]
biome_masks = biome_masks*blurred_land_mask
adjusted_height_map = height_map.copy()
for i in range(len(biome_height_maps)):
adjusted_height_map = (1-biome_masks[i])*adjusted_height_map + biome_masks[i]*biome_height_maps[i]
# add rivers
biome_bound = get_boundary(biome_map, size, kernel=5)
cell_bound = get_boundary(vor_map, size, kernel=2)
river_mask = noise_map(size, 4, 4353 + map_seed, octaves=6, persistence=0.5, lacunarity=2) > 0
new_biome_bound = biome_bound*(adjusted_height_map<0.5)*land_mask
new_cell_bound = cell_bound*(adjusted_height_map<0.05)*land_mask
rivers = np.logical_or(new_biome_bound, new_cell_bound)*river_mask
loose_river_mask = binary_dilation(rivers, iterations=8)
rivers_height = gaussian_filter(rivers.astype(np.float64), sigma=2)*loose_river_mask
adjusted_height_river_map = adjusted_height_map*(1-rivers_height) - 0.05*rivers
sea_color = np.array([12, 14, 255])
river_land_mask = adjusted_height_river_map >= 0
land_mask_color = np.repeat(river_land_mask[:, :, np.newaxis], 3, axis=-1)
rivers_biome_color_map = land_mask_color*biome_color_map + (1-land_mask_color)*sea_color
rivers_biome_map = river_land_mask * biome_map + (1 - river_land_mask) * biome_count # use biome count=9 as water indicator
semantic_map = rivers_biome_map
semantic_map_color = rivers_biome_color_map
height_map = adjusted_height_river_map
tree_densities = [4000, 1500, 8000, 1000, 10000, 25000, 10000, 20000, 5000]
trees = [np.array(place_trees(river_land_mask, adjusted_height_river_map, tree_densities[i], biome_masks[i], size)) for i in range(len(biome_names))]
canvas = np.ones((size, size)) * 255
for k in range(len(biome_names)):
canvas[trees[k][:, 1], trees[k][:, 0]] = k
tree_map = canvas
return height_map, semantic_map, tree_map, semantic_map_color
if __name__ == '__main__':
import os
parser = ArgumentParser()
parser.add_argument('--size', type=int, required=True)
parser.add_argument('--nbins', type=int, default=256)
parser.add_argument('--seed', type=int, default=3407)
parser.add_argument('--outdir', type=str, required=True)
args = parser.parse_args()
outdir = args.outdir
heightmap, semanticmap, treemap, colormap = PCGGen(args.size, args.nbins, args.seed)
save_height_map(heightmap, os.path.join(outdir, 'heightmap.png'))
cv2.imwrite(os.path.join(outdir, 'semanticmap.png'), semanticmap.astype(np.uint8))
cv2.imwrite(os.path.join(outdir, 'colormap.png'), colormap[..., [2, 1, 0]].astype(np.uint8))
cv2.imwrite(os.path.join(outdir, 'treemap.png'), treemap)