Spaces:
Runtime error
Runtime error
File size: 13,229 Bytes
b72e09b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import numpy as np
from scipy.spatial import Voronoi
from skimage.draw import polygon
from PIL import Image
from noise import snoise3
from skimage import exposure
from scipy.interpolate import interp1d
import cv2
from scipy.ndimage import gaussian_filter
from scipy.ndimage import binary_dilation
from argparse import ArgumentParser
def save_height_map(height_map, file_name):
#input height map should be float, raw output of noise map
normalized_height_map = (((height_map - height_map.min()) / (height_map.max() - height_map.min()))*255).astype(np.uint8)
cv2.imwrite(file_name, normalized_height_map)
np.save(file_name[:-4] + '.npy', height_map)
def get_boundary(vor_map, size, kernel=1):
boundary_map = np.zeros_like(vor_map, dtype=bool)
n, m = vor_map.shape
clip = lambda x: max(0, min(size-1, x))
def check_for_mult(a):
b = a[0]
for i in range(len(a)-1):
if a[i] != b: return 1
return 0
for i in range(n):
for j in range(m):
boundary_map[i, j] = check_for_mult(vor_map[
clip(i-kernel):clip(i+kernel+1),
clip(j-kernel):clip(j+kernel+1),
].flatten())
return boundary_map
def histeq(img, alpha=1):
img_cdf, bin_centers = exposure.cumulative_distribution(img)
img_eq = np.interp(img, bin_centers, img_cdf)
img_eq = np.interp(img_eq, (0, 1), (-1, 1))
return alpha * img_eq + (1 - alpha) * img
def voronoi(points, size):
# Add points at edges to eliminate infinite ridges
edge_points = size*np.array([[-1, -1], [-1, 2], [2, -1], [2, 2]])
new_points = np.vstack([points, edge_points])
# Calculate Voronoi tessellation
vor = Voronoi(new_points)
return vor
def voronoi_map(vor, size):
# Calculate Voronoi map
vor_map = np.zeros((size, size), dtype=np.uint32)
for i, region in enumerate(vor.regions):
# Skip empty regions and infinte ridge regions
if len(region) == 0 or -1 in region: continue
# Get polygon vertices
x, y = np.array([vor.vertices[i][::-1] for i in region]).T
# Get pixels inside polygon
rr, cc = polygon(x, y)
# Remove pixels out of image bounds
in_box = np.where((0 <= rr) & (rr < size) & (0 <= cc) & (cc < size))
rr, cc = rr[in_box], cc[in_box]
# Paint image
vor_map[rr, cc] = i
return vor_map
# Lloyd's relaxation
def relax(points, size, k=10):
new_points = points.copy()
for _ in range(k):
vor = voronoi(new_points, size)
new_points = []
for i, region in enumerate(vor.regions):
if len(region) == 0 or -1 in region: continue
poly = np.array([vor.vertices[i] for i in region])
center = poly.mean(axis=0)
new_points.append(center)
new_points = np.array(new_points).clip(0, size)
return new_points
def noise_map(size, res, seed, octaves=1, persistence=0.5, lacunarity=2.0):
scale = size/res
return np.array([[
snoise3(
(x+0.1)/scale,
y/scale,
seed,
octaves=octaves,
persistence=persistence,
lacunarity=lacunarity
)
for x in range(size)]
for y in range(size)
])
def average_cells(vor, data):
"""Returns the average value of data inside every voronoi cell"""
size = vor.shape[0]
count = np.max(vor)+1
sum_ = np.zeros(count)
count = np.zeros(count)
for i in range(size):
for j in range(size):
p = vor[i, j]
count[p] += 1
sum_[p] += data[i, j]
average = sum_/ (count + 1e-3)
average[count==0] = 0
return average
def fill_cells(vor, data):
size = vor.shape[0]
image = np.zeros((size, size))
for i in range(size):
for j in range(size):
p = vor[i, j]
image[i, j] = data[p]
return image
def color_cells(vor, data, dtype=int):
size = vor.shape[0]
image = np.zeros((size, size, 3))
for i in range(size):
for j in range(size):
p = vor[i, j]
image[i, j] = data[p]
return image.astype(dtype)
def quantize(data, n):
bins = np.linspace(-1, 1, n+1)
return (np.digitize(data, bins) - 1).clip(0, n-1)
def bezier(x1, y1, x2, y2, a):
p1 = np.array([0, 0])
p2 = np.array([x1, y1])
p3 = np.array([x2, y2])
p4 = np.array([1, a])
return lambda t: ((1-t)**3 * p1 + 3*(1-t)**2*t * p2 + 3*(1-t)*t**2 * p3 + t**3 * p4)
def bezier_lut(x1, y1, x2, y2, a):
t = np.linspace(0, 1, 256)
f = bezier(x1, y1, x2, y2, a)
curve = np.array([f(t_) for t_ in t])
return interp1d(*curve.T)
def filter_map(h_map, smooth_h_map, x1, y1, x2, y2, a, b):
f = bezier_lut(x1, y1, x2, y2, a)
output_map = b*h_map + (1-b)*smooth_h_map
output_map = f(output_map.clip(0, 1))
return output_map
def filter_inbox(pts, size):
inidx = np.all(pts < size, axis=1)
return pts[inidx]
def generate_trees(n, size):
trees = np.random.randint(0, size-1, (n, 2))
trees = relax(trees, size, k=10).astype(np.uint32)
trees = filter_inbox(trees, size)
return trees
def place_trees(river_land_mask, adjusted_height_river_map, n, mask, size, a=0.5):
trees= generate_trees(n, size)
rr, cc = trees.T
output_trees = np.zeros((size, size), dtype=bool)
output_trees[rr, cc] = True
output_trees = output_trees*(mask>a)*river_land_mask*(adjusted_height_river_map<0.5)
output_trees = np.array(np.where(output_trees == 1))[::-1].T
return output_trees
def PCGGen(map_size, nbins = 256, seed = 3407):
biome_names = [
# sand and rock
"desert",
# grass gravel rock stone
"savanna", # mixed woodland and grassland
# trees flower
"tropical_woodland", # rainforest
# dirt grass gravel rock stone
"tundra", # no trees
# trees flower
"seasonal_forest",
# trees
"rainforest",
# trees
"temperate_forest",
# trees
"temperate_rainforest",
# snow rock tree
"boreal_forest" # taiga, snow forest
]
biome_colors = [
[255, 255, 178],
[184, 200, 98],
[188, 161, 53],
[190, 255, 242],
[106, 144, 38],
[33, 77, 41],
[86, 179, 106],
[34, 61, 53],
[35, 114, 94]
]
size = map_size
n = nbins
map_seed = seed
# start generation
points = np.random.randint(0, size, (514, 2))
points = relax(points, size, k=100)
vor = voronoi(points, size)
vor_map = voronoi_map(vor, size)
boundary_displacement = 8
boundary_noise = np.dstack([noise_map(size, 32, 200 + map_seed, octaves=8), noise_map(size, 32, 250 + map_seed, octaves=8)])
boundary_noise = np.indices((size, size)).T + boundary_displacement*boundary_noise
boundary_noise = boundary_noise.clip(0, size-1).astype(np.uint32)
blurred_vor_map = np.zeros_like(vor_map)
for x in range(size):
for y in range(size):
j, i = boundary_noise[x, y]
blurred_vor_map[x, y] = vor_map[i, j]
vor_map = blurred_vor_map
temperature_map = noise_map(size, 2, 10 + map_seed)
precipitation_map = noise_map(size, 2, 20 + map_seed)
uniform_temperature_map = histeq(temperature_map, alpha=0.33)
uniform_precipitation_map = histeq(precipitation_map, alpha=0.33)
temperature_map = uniform_temperature_map
precipitation_map = uniform_precipitation_map
temperature_cells = average_cells(vor_map, temperature_map)
precipitation_cells = average_cells(vor_map, precipitation_map)
quantize_temperature_cells = quantize(temperature_cells, n)
quantize_precipitation_cells = quantize(precipitation_cells, n)
quantize_temperature_map = fill_cells(vor_map, quantize_temperature_cells)
quantize_precipitation_map = fill_cells(vor_map, quantize_precipitation_cells)
temperature_cells = quantize_temperature_cells
precipitation_cells = quantize_precipitation_cells
temperature_map = quantize_temperature_map
precipitation_map = quantize_precipitation_map
im = np.array(Image.open("./assets/biome_image.png"))[:, :, :3]
im = cv2.resize(im, (256, 256))
biomes = np.zeros((256, 256))
for i, color in enumerate(biome_colors):
indices = np.where(np.all(im == color, axis=-1))
biomes[indices] = i
biomes = np.flip(biomes, axis=0).T
n = len(temperature_cells)
biome_cells = np.zeros(n, dtype=np.uint32)
for i in range(n):
temp, precip = temperature_cells[i], precipitation_cells[i]
biome_cells[i] = biomes[temp, precip]
biome_map = fill_cells(vor_map, biome_cells).astype(np.uint32)
biome_color_map = color_cells(biome_map, biome_colors)
height_map = noise_map(size, 4, 0 + map_seed, octaves=6, persistence=0.5, lacunarity=2)
land_mask = height_map > 0
smooth_height_map = noise_map(size, 4, 0 + map_seed, octaves=1, persistence=0.5, lacunarity=2)
biome_height_maps = [
# Desert
filter_map(height_map, smooth_height_map, 0.75, 0.2, 0.95, 0.2, 0.2, 0.5),
# Savanna
filter_map(height_map, smooth_height_map, 0.5, 0.1, 0.95, 0.1, 0.1, 0.2),
# Tropical Woodland
filter_map(height_map, smooth_height_map, 0.33, 0.33, 0.95, 0.1, 0.1, 0.75),
# Tundra
filter_map(height_map, smooth_height_map, 0.5, 1, 0.25, 1, 1, 1),
# Seasonal Forest
filter_map(height_map, smooth_height_map, 0.75, 0.5, 0.4, 0.4, 0.33, 0.2),
# Rainforest
filter_map(height_map, smooth_height_map, 0.5, 0.25, 0.66, 1, 1, 0.5),
# Temperate forest
filter_map(height_map, smooth_height_map, 0.75, 0.5, 0.4, 0.4, 0.33, 0.33),
# Temperate Rainforest
filter_map(height_map, smooth_height_map, 0.75, 0.5, 0.4, 0.4, 0.33, 0.33),
# Boreal
filter_map(height_map, smooth_height_map, 0.8, 0.1, 0.9, 0.05, 0.05, 0.1)
]
biome_count = len(biome_names)
biome_masks = np.zeros((biome_count, size, size))
for i in range(biome_count):
biome_masks[i, biome_map==i] = 1
biome_masks[i] = gaussian_filter(biome_masks[i], sigma=16)
# Remove ocean from masks
blurred_land_mask = land_mask
blurred_land_mask = binary_dilation(land_mask, iterations=32).astype(np.float64)
blurred_land_mask = gaussian_filter(blurred_land_mask, sigma=16)
# biome mask - [9, size, size]
biome_masks = biome_masks*blurred_land_mask
adjusted_height_map = height_map.copy()
for i in range(len(biome_height_maps)):
adjusted_height_map = (1-biome_masks[i])*adjusted_height_map + biome_masks[i]*biome_height_maps[i]
# add rivers
biome_bound = get_boundary(biome_map, size, kernel=5)
cell_bound = get_boundary(vor_map, size, kernel=2)
river_mask = noise_map(size, 4, 4353 + map_seed, octaves=6, persistence=0.5, lacunarity=2) > 0
new_biome_bound = biome_bound*(adjusted_height_map<0.5)*land_mask
new_cell_bound = cell_bound*(adjusted_height_map<0.05)*land_mask
rivers = np.logical_or(new_biome_bound, new_cell_bound)*river_mask
loose_river_mask = binary_dilation(rivers, iterations=8)
rivers_height = gaussian_filter(rivers.astype(np.float64), sigma=2)*loose_river_mask
adjusted_height_river_map = adjusted_height_map*(1-rivers_height) - 0.05*rivers
sea_color = np.array([12, 14, 255])
river_land_mask = adjusted_height_river_map >= 0
land_mask_color = np.repeat(river_land_mask[:, :, np.newaxis], 3, axis=-1)
rivers_biome_color_map = land_mask_color*biome_color_map + (1-land_mask_color)*sea_color
rivers_biome_map = river_land_mask * biome_map + (1 - river_land_mask) * biome_count # use biome count=9 as water indicator
semantic_map = rivers_biome_map
semantic_map_color = rivers_biome_color_map
height_map = adjusted_height_river_map
tree_densities = [4000, 1500, 8000, 1000, 10000, 25000, 10000, 20000, 5000]
trees = [np.array(place_trees(river_land_mask, adjusted_height_river_map, tree_densities[i], biome_masks[i], size)) for i in range(len(biome_names))]
canvas = np.ones((size, size)) * 255
for k in range(len(biome_names)):
canvas[trees[k][:, 1], trees[k][:, 0]] = k
tree_map = canvas
return height_map, semantic_map, tree_map, semantic_map_color
if __name__ == '__main__':
import os
parser = ArgumentParser()
parser.add_argument('--size', type=int, required=True)
parser.add_argument('--nbins', type=int, default=256)
parser.add_argument('--seed', type=int, default=3407)
parser.add_argument('--outdir', type=str, required=True)
args = parser.parse_args()
outdir = args.outdir
heightmap, semanticmap, treemap, colormap = PCGGen(args.size, args.nbins, args.seed)
save_height_map(heightmap, os.path.join(outdir, 'heightmap.png'))
cv2.imwrite(os.path.join(outdir, 'semanticmap.png'), semanticmap.astype(np.uint8))
cv2.imwrite(os.path.join(outdir, 'colormap.png'), colormap[..., [2, 1, 0]].astype(np.uint8))
cv2.imwrite(os.path.join(outdir, 'treemap.png'), treemap)
|