gabrielsemiceki9's picture
Upload 125 files
b72e09b verified
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
import cv2
import os
class PCGCache(nn.Module):
r"""PCG Datasets"""
def __init__(self, pcg_dataset_path):
super(PCGCache, self).__init__()
'''
height_map: [size, size] array, in [-1, 1] range where < 0 indicates water
semantic_map: [size, size] array, in {0, 1, ..., 9} range, where 9 indicates water
'''
self.sample_size = 1024
self.sample_height = 256
pcg_world_list = sorted(os.listdir(pcg_dataset_path))
self.pcg_world_path = []
for p in pcg_world_list:
self.pcg_world_path.append(os.path.join(pcg_dataset_path, p))
self.n = len(self.pcg_world_path)
def sample_world(self, device):
idx = random.randint(0, self.n - 1)
world_path = self.pcg_world_path[idx]
voxel_sparse = np.load(os.path.join(world_path, 'voxel_sparse.npy'))
current_height_map = np.load(os.path.join(world_path, 'height_map.npy'))
current_semantic_map = np.load(os.path.join(world_path, 'semantic_map.npy'))
heightmap = np.load(os.path.join(world_path, 'hmap_mc.npy'))
voxel_sparse = torch.from_numpy(voxel_sparse).to(device)
voxel_1 = voxel_sparse[0, :].to(torch.int64)
voxel_2 = voxel_sparse[1, :].to(torch.int64)
voxel_3 = voxel_sparse[2, :].to(torch.int64)
self.voxel_t = torch.zeros(self.sample_height, self.sample_size, self.sample_size, device=device, dtype=torch.int32)
self.voxel_t[voxel_1, voxel_2, voxel_3] = voxel_sparse[3, :].to(torch.int32)
self.current_height_map = torch.from_numpy(current_height_map).to(device)
self.current_semantic_map = torch.from_numpy(current_semantic_map).to(device)
self.heightmap = torch.from_numpy(heightmap)
self.trans_mat = torch.eye(4)
gnd_level = heightmap.min()
sky_level = heightmap.max() + 1
self.voxel_t = self.voxel_t[gnd_level:sky_level, :, :]
self.trans_mat[0, 3] += gnd_level
def world2local(self, v, is_vec=False):
mat_world2local = torch.inverse(self.trans_mat)
return trans_vec_homo(mat_world2local, v, is_vec)
def _truncate_voxel(self):
gnd_level = self.heightmap.min()
sky_level = self.heightmap.max() + 1
self.voxel_t = self.voxel_t[gnd_level:sky_level, :, :]
self.trans_mat[0, 3] += gnd_level
print('[GANcraft-utils] Voxel truncated. Gnd: {}; Sky: {}.'.format(gnd_level.item(), sky_level.item()))
def is_sea(self, loc):
r"""loc: [2]: x, z."""
x = int(loc[1])
z = int(loc[2])
if x < 0 or x > self.heightmap.size(0) or z < 0 or z > self.heightmap.size(1):
print('[McVoxel] is_sea(): Index out of bound.')
return True
y = self.heightmap[x, z] - self.trans_mat[0, 3]
y = int(y)
if self.voxel_t[y, x, z] == 26:
print('[McVoxel] is_sea(): Get a sea.')
print(self.voxel_t[y, x, z], self.voxel_t[y+1, x, z])
return True
else:
return False
class PCGVoxelGenerator(nn.Module):
def __init__(self, sample_size = 2048):
super(PCGVoxelGenerator, self).__init__()
self.sample_height = 256
self.sample_size = sample_size
self.voxel_t = None
def next_world(self, device, world_dir, pcg_asset):
# Generate BEV representation
print('[PCGGenerator] Loading BEV scene representation...')
heightmap_path = os.path.join(world_dir, 'heightmap.npy')
semanticmap_path = os.path.join(world_dir, 'semanticmap.png')
treemap_path = os.path.join(world_dir, 'treemap.png')
height_map = np.load(heightmap_path)
semantic_map = cv2.imread(semanticmap_path, 0)
tree_map = cv2.imread(treemap_path, 0)
print('[PCGGenerator] Creating scene windows...')
height_map[height_map < 0] = 0
height_map = ((height_map - height_map.min()) / (1 - height_map.min()) * (self.sample_height - 1)).astype(np.int16)
self.total_size = height_map.shape
org_semantic_map = torch.from_numpy(semantic_map.copy())
org_semantic_map[tree_map != 255] = 10
chunk_trees_map = tree_map
biome_trees_dict = {
'desert': [],
'savanna': [5],
'twoodland': [1, 7],
'tundra': [],
'seasonal forest': [1, 2],
'rainforest': [1, 2, 3],
'temp forest': [4],
'temp rainforest': [0, 3],
'boreal': [5,6,7],
'water': [],
}
biome2mclabels = torch.tensor([28, 9, 8, 1, 9, 8, 9, 8, 30, 26], dtype=torch.int32)
biome_names = list(biome_trees_dict.keys())
chunk_grid_x, chunk_grid_y = torch.meshgrid(torch.arange(self.total_size[0]), torch.arange(self.total_size[1]))
world_voxel_t = torch.zeros(self.sample_height, self.total_size[0], self.total_size[1]).to(torch.int32)
chunk_height_map = torch.from_numpy(height_map.astype(int))[None, ...]
chunk_semantic_map = torch.from_numpy(semantic_map)
chunk_semantic_map = biome2mclabels[chunk_semantic_map[None, ...].long().contiguous()]
world_voxel_t = world_voxel_t.scatter_(0, chunk_height_map, chunk_semantic_map)
pad_num = 16
for preproc_step in range(pad_num):
world_voxel_t = world_voxel_t.scatter(0, torch.clip(chunk_height_map + preproc_step + 1, 0, self.sample_height - 1), chunk_semantic_map)
chunk_height_map = chunk_height_map + pad_num
chunk_height_map = chunk_height_map[0]
boundary_detect = 50
trees_models = pcg_asset['assets']
for biome_id in range(biome2mclabels.shape[0]):
tree_pos_mask = (chunk_trees_map == biome_id)
tree_pos_x = chunk_grid_x[tree_pos_mask]
tree_pos_y = chunk_grid_y[tree_pos_mask]
tree_pos_h = chunk_height_map[tree_pos_mask]
assert len(tree_pos_x) == len(tree_pos_y)
selected_trees = biome_trees_dict[biome_names[biome_id]]
if len(selected_trees) == 0:
continue
for idx in range(len(tree_pos_x)):
if tree_pos_x[idx] < boundary_detect or tree_pos_x[idx] > self.total_size[0] - boundary_detect or tree_pos_y[idx] < boundary_detect or tree_pos_y[idx] > self.total_size[1] - boundary_detect or tree_pos_h[idx] > self.sample_height - boundary_detect:
# hack, to avoid out of index near the boundary
continue
tree_id = random.choice(selected_trees)
tmp = world_voxel_t[tree_pos_h[idx]: tree_pos_h[idx] + trees_models[tree_id].shape[0], tree_pos_x[idx]: tree_pos_x[idx] + trees_models[tree_id].shape[1], tree_pos_y[idx]: tree_pos_y[idx] + trees_models[tree_id].shape[2]]
tmp_mask = (tmp == 0)
try:
world_voxel_t[tree_pos_h[idx]: tree_pos_h[idx] + trees_models[tree_id].shape[0], tree_pos_x[idx]: tree_pos_x[idx] + trees_models[tree_id].shape[1], tree_pos_y[idx]: tree_pos_y[idx] + trees_models[tree_id].shape[2]][tmp_mask] = trees_models[tree_id][tmp_mask]
except:
print('height?', tree_pos_h[idx])
print(tmp_mask.shape)
print(tmp.shape)
print(trees_models[tree_id].shape)
print(world_voxel_t.shape)
print(tree_id)
raise NotImplementedError
self.trans_mat = torch.eye(4) # Transform voxel to world
# Generate heightmap for camera trajectory generation
m, h = torch.max((torch.flip(world_voxel_t, [0]) != 0).int(), dim=0, keepdim=False)
heightmap = world_voxel_t.shape[0] - 1 - h
heightmap[m == 0] = 0 # Special case when the whole vertical column is empty
gnd_level = heightmap.min()
sky_level = heightmap.max() + 1
current_height_map = (chunk_height_map / (self.sample_height - 1))[None, None, ...]
current_semantic_map = F.one_hot(org_semantic_map.to(torch.int64)).to(torch.float).permute(2, 0, 1)[None, ...]
self.current_height_map = current_height_map.to(device)
self.current_semantic_map = current_semantic_map.to(device)
self.heightmap = heightmap
self.voxel_t = world_voxel_t[gnd_level:sky_level, :, :].to(device)
self.trans_mat[0, 3] += gnd_level
def world2local(self, v, is_vec=False):
mat_world2local = torch.inverse(self.trans_mat)
return trans_vec_homo(mat_world2local, v, is_vec)
def is_sea(self, loc):
r"""loc: [2]: x, z."""
x = int(loc[1])
z = int(loc[2])
if x < 0 or x > self.heightmap.size(0) or z < 0 or z > self.heightmap.size(1):
print('[McVoxel] is_sea(): Index out of bound.')
return True
y = self.heightmap[x, z] - self.trans_mat[0, 3]
y = int(y)
if self.voxel_t[y, x, z] == 26:
print('[McVoxel] is_sea(): Get a sea.')
print(self.voxel_t[y, x, z], self.voxel_t[y+1, x, z])
return True
else:
return False
def trans_vec_homo(m, v, is_vec=False):
r"""3-dimensional Homogeneous matrix and regular vector multiplication
Convert v to homogeneous vector, perform M-V multiplication, and convert back
Note that this function does not support autograd.
Args:
m (4 x 4 tensor): a homogeneous matrix
v (3 tensor): a 3-d vector
vec (bool): if true, v is direction. Otherwise v is point
"""
if is_vec:
v = torch.tensor([v[0], v[1], v[2], 0], dtype=v.dtype)
else:
v = torch.tensor([v[0], v[1], v[2], 1], dtype=v.dtype)
v = torch.mv(m, v)
if not is_vec:
v = v / v[3]
v = v[:3]
return v