Spaces:
Runtime error
Runtime error
File size: 9,922 Bytes
b72e09b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
import cv2
import os
class PCGCache(nn.Module):
r"""PCG Datasets"""
def __init__(self, pcg_dataset_path):
super(PCGCache, self).__init__()
'''
height_map: [size, size] array, in [-1, 1] range where < 0 indicates water
semantic_map: [size, size] array, in {0, 1, ..., 9} range, where 9 indicates water
'''
self.sample_size = 1024
self.sample_height = 256
pcg_world_list = sorted(os.listdir(pcg_dataset_path))
self.pcg_world_path = []
for p in pcg_world_list:
self.pcg_world_path.append(os.path.join(pcg_dataset_path, p))
self.n = len(self.pcg_world_path)
def sample_world(self, device):
idx = random.randint(0, self.n - 1)
world_path = self.pcg_world_path[idx]
voxel_sparse = np.load(os.path.join(world_path, 'voxel_sparse.npy'))
current_height_map = np.load(os.path.join(world_path, 'height_map.npy'))
current_semantic_map = np.load(os.path.join(world_path, 'semantic_map.npy'))
heightmap = np.load(os.path.join(world_path, 'hmap_mc.npy'))
voxel_sparse = torch.from_numpy(voxel_sparse).to(device)
voxel_1 = voxel_sparse[0, :].to(torch.int64)
voxel_2 = voxel_sparse[1, :].to(torch.int64)
voxel_3 = voxel_sparse[2, :].to(torch.int64)
self.voxel_t = torch.zeros(self.sample_height, self.sample_size, self.sample_size, device=device, dtype=torch.int32)
self.voxel_t[voxel_1, voxel_2, voxel_3] = voxel_sparse[3, :].to(torch.int32)
self.current_height_map = torch.from_numpy(current_height_map).to(device)
self.current_semantic_map = torch.from_numpy(current_semantic_map).to(device)
self.heightmap = torch.from_numpy(heightmap)
self.trans_mat = torch.eye(4)
gnd_level = heightmap.min()
sky_level = heightmap.max() + 1
self.voxel_t = self.voxel_t[gnd_level:sky_level, :, :]
self.trans_mat[0, 3] += gnd_level
def world2local(self, v, is_vec=False):
mat_world2local = torch.inverse(self.trans_mat)
return trans_vec_homo(mat_world2local, v, is_vec)
def _truncate_voxel(self):
gnd_level = self.heightmap.min()
sky_level = self.heightmap.max() + 1
self.voxel_t = self.voxel_t[gnd_level:sky_level, :, :]
self.trans_mat[0, 3] += gnd_level
print('[GANcraft-utils] Voxel truncated. Gnd: {}; Sky: {}.'.format(gnd_level.item(), sky_level.item()))
def is_sea(self, loc):
r"""loc: [2]: x, z."""
x = int(loc[1])
z = int(loc[2])
if x < 0 or x > self.heightmap.size(0) or z < 0 or z > self.heightmap.size(1):
print('[McVoxel] is_sea(): Index out of bound.')
return True
y = self.heightmap[x, z] - self.trans_mat[0, 3]
y = int(y)
if self.voxel_t[y, x, z] == 26:
print('[McVoxel] is_sea(): Get a sea.')
print(self.voxel_t[y, x, z], self.voxel_t[y+1, x, z])
return True
else:
return False
class PCGVoxelGenerator(nn.Module):
def __init__(self, sample_size = 2048):
super(PCGVoxelGenerator, self).__init__()
self.sample_height = 256
self.sample_size = sample_size
self.voxel_t = None
def next_world(self, device, world_dir, pcg_asset):
# Generate BEV representation
print('[PCGGenerator] Loading BEV scene representation...')
heightmap_path = os.path.join(world_dir, 'heightmap.npy')
semanticmap_path = os.path.join(world_dir, 'semanticmap.png')
treemap_path = os.path.join(world_dir, 'treemap.png')
height_map = np.load(heightmap_path)
semantic_map = cv2.imread(semanticmap_path, 0)
tree_map = cv2.imread(treemap_path, 0)
print('[PCGGenerator] Creating scene windows...')
height_map[height_map < 0] = 0
height_map = ((height_map - height_map.min()) / (1 - height_map.min()) * (self.sample_height - 1)).astype(np.int16)
self.total_size = height_map.shape
org_semantic_map = torch.from_numpy(semantic_map.copy())
org_semantic_map[tree_map != 255] = 10
chunk_trees_map = tree_map
biome_trees_dict = {
'desert': [],
'savanna': [5],
'twoodland': [1, 7],
'tundra': [],
'seasonal forest': [1, 2],
'rainforest': [1, 2, 3],
'temp forest': [4],
'temp rainforest': [0, 3],
'boreal': [5,6,7],
'water': [],
}
biome2mclabels = torch.tensor([28, 9, 8, 1, 9, 8, 9, 8, 30, 26], dtype=torch.int32)
biome_names = list(biome_trees_dict.keys())
chunk_grid_x, chunk_grid_y = torch.meshgrid(torch.arange(self.total_size[0]), torch.arange(self.total_size[1]))
world_voxel_t = torch.zeros(self.sample_height, self.total_size[0], self.total_size[1]).to(torch.int32)
chunk_height_map = torch.from_numpy(height_map.astype(int))[None, ...]
chunk_semantic_map = torch.from_numpy(semantic_map)
chunk_semantic_map = biome2mclabels[chunk_semantic_map[None, ...].long().contiguous()]
world_voxel_t = world_voxel_t.scatter_(0, chunk_height_map, chunk_semantic_map)
pad_num = 16
for preproc_step in range(pad_num):
world_voxel_t = world_voxel_t.scatter(0, torch.clip(chunk_height_map + preproc_step + 1, 0, self.sample_height - 1), chunk_semantic_map)
chunk_height_map = chunk_height_map + pad_num
chunk_height_map = chunk_height_map[0]
boundary_detect = 50
trees_models = pcg_asset['assets']
for biome_id in range(biome2mclabels.shape[0]):
tree_pos_mask = (chunk_trees_map == biome_id)
tree_pos_x = chunk_grid_x[tree_pos_mask]
tree_pos_y = chunk_grid_y[tree_pos_mask]
tree_pos_h = chunk_height_map[tree_pos_mask]
assert len(tree_pos_x) == len(tree_pos_y)
selected_trees = biome_trees_dict[biome_names[biome_id]]
if len(selected_trees) == 0:
continue
for idx in range(len(tree_pos_x)):
if tree_pos_x[idx] < boundary_detect or tree_pos_x[idx] > self.total_size[0] - boundary_detect or tree_pos_y[idx] < boundary_detect or tree_pos_y[idx] > self.total_size[1] - boundary_detect or tree_pos_h[idx] > self.sample_height - boundary_detect:
# hack, to avoid out of index near the boundary
continue
tree_id = random.choice(selected_trees)
tmp = world_voxel_t[tree_pos_h[idx]: tree_pos_h[idx] + trees_models[tree_id].shape[0], tree_pos_x[idx]: tree_pos_x[idx] + trees_models[tree_id].shape[1], tree_pos_y[idx]: tree_pos_y[idx] + trees_models[tree_id].shape[2]]
tmp_mask = (tmp == 0)
try:
world_voxel_t[tree_pos_h[idx]: tree_pos_h[idx] + trees_models[tree_id].shape[0], tree_pos_x[idx]: tree_pos_x[idx] + trees_models[tree_id].shape[1], tree_pos_y[idx]: tree_pos_y[idx] + trees_models[tree_id].shape[2]][tmp_mask] = trees_models[tree_id][tmp_mask]
except:
print('height?', tree_pos_h[idx])
print(tmp_mask.shape)
print(tmp.shape)
print(trees_models[tree_id].shape)
print(world_voxel_t.shape)
print(tree_id)
raise NotImplementedError
self.trans_mat = torch.eye(4) # Transform voxel to world
# Generate heightmap for camera trajectory generation
m, h = torch.max((torch.flip(world_voxel_t, [0]) != 0).int(), dim=0, keepdim=False)
heightmap = world_voxel_t.shape[0] - 1 - h
heightmap[m == 0] = 0 # Special case when the whole vertical column is empty
gnd_level = heightmap.min()
sky_level = heightmap.max() + 1
current_height_map = (chunk_height_map / (self.sample_height - 1))[None, None, ...]
current_semantic_map = F.one_hot(org_semantic_map.to(torch.int64)).to(torch.float).permute(2, 0, 1)[None, ...]
self.current_height_map = current_height_map.to(device)
self.current_semantic_map = current_semantic_map.to(device)
self.heightmap = heightmap
self.voxel_t = world_voxel_t[gnd_level:sky_level, :, :].to(device)
self.trans_mat[0, 3] += gnd_level
def world2local(self, v, is_vec=False):
mat_world2local = torch.inverse(self.trans_mat)
return trans_vec_homo(mat_world2local, v, is_vec)
def is_sea(self, loc):
r"""loc: [2]: x, z."""
x = int(loc[1])
z = int(loc[2])
if x < 0 or x > self.heightmap.size(0) or z < 0 or z > self.heightmap.size(1):
print('[McVoxel] is_sea(): Index out of bound.')
return True
y = self.heightmap[x, z] - self.trans_mat[0, 3]
y = int(y)
if self.voxel_t[y, x, z] == 26:
print('[McVoxel] is_sea(): Get a sea.')
print(self.voxel_t[y, x, z], self.voxel_t[y+1, x, z])
return True
else:
return False
def trans_vec_homo(m, v, is_vec=False):
r"""3-dimensional Homogeneous matrix and regular vector multiplication
Convert v to homogeneous vector, perform M-V multiplication, and convert back
Note that this function does not support autograd.
Args:
m (4 x 4 tensor): a homogeneous matrix
v (3 tensor): a 3-d vector
vec (bool): if true, v is direction. Otherwise v is point
"""
if is_vec:
v = torch.tensor([v[0], v[1], v[2], 0], dtype=v.dtype)
else:
v = torch.tensor([v[0], v[1], v[2], 1], dtype=v.dtype)
v = torch.mv(m, v)
if not is_vec:
v = v / v[3]
v = v[:3]
return v |