File size: 17,730 Bytes
ea174b0 ccd4320 ea174b0 2fac462 ea174b0 2fac462 ea174b0 2fac462 ea174b0 2fac462 ea174b0 2fac462 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
import os
import re
import torch
import torchaudio
import numpy as np
from transformers import AutoTokenizer
from modeling_asteroid import AsteroidTTSInstruct
from XY_Tokenizer.xy_tokenizer.model import XY_Tokenizer
MAX_CHANNELS = 8
SILENCE_DURATION = 5.0 # Fixed silence duration: 5 seconds
def load_model(model_path, spt_config_path, spt_checkpoint_path):
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AsteroidTTSInstruct.from_pretrained(model_path, torch_dtype=torch.bfloat16, attn_implementation="sdpa")
spt = XY_Tokenizer.load_from_checkpoint(config_path=spt_config_path, ckpt_path=spt_checkpoint_path)
model.eval()
spt.eval()
return tokenizer, model, spt
def process_jsonl_item(item):
"""Process JSONL data items and extract audio and text information according to the new format"""
base_path = item.get("base_path", "")
text = item.get("text", "")
# Process prompt audio and text
if "prompt_audio" in item and "prompt_text" in item:
print("Using prompt_audio and prompt_text directly from item.")
# If prompt_audio and prompt_text exist, use them directly
prompt_audio = item["prompt_audio"]
prompt_text = item["prompt_text"]
# Only perform path joining when prompt_audio is a string path
if isinstance(prompt_audio, str) and base_path and prompt_audio:
prompt_audio = os.path.join(base_path, prompt_audio)
else:
print("Using speaker1 and speaker2 information for prompt audio and text.")
# Otherwise, merge speaker1 and speaker2 information
prompt_audio_speaker1 = item.get("prompt_audio_speaker1", "")
prompt_text_speaker1 = item.get("prompt_text_speaker1", "")
prompt_audio_speaker2 = item.get("prompt_audio_speaker2", "")
prompt_text_speaker2 = item.get("prompt_text_speaker2", "")
# Process audio: if it's a string path, perform path joining; if it's a tuple, use directly
if isinstance(prompt_audio_speaker1, str):
speaker1_audio = os.path.join(base_path, prompt_audio_speaker1) if base_path and prompt_audio_speaker1 else prompt_audio_speaker1
else:
speaker1_audio = prompt_audio_speaker1 # Use tuple directly
if isinstance(prompt_audio_speaker2, str):
speaker2_audio = os.path.join(base_path, prompt_audio_speaker2) if base_path and prompt_audio_speaker2 else prompt_audio_speaker2
else:
speaker2_audio = prompt_audio_speaker2 # Use tuple directly
prompt_audio = {
"speaker1": speaker1_audio,
"speaker2": speaker2_audio
}
# Merge text
prompt_text = ""
if prompt_text_speaker1:
prompt_text += f"[S1]{prompt_text_speaker1}"
if prompt_text_speaker2:
prompt_text += f"[S2]{prompt_text_speaker2}"
prompt_text = prompt_text.strip()
return {
"text": text,
"prompt_text": prompt_text,
"prompt_audio": prompt_audio
}
def load_audio_data(prompt_audio, target_sample_rate=16000):
"""Load audio data and return processed audio tensor
Args:
prompt_audio: Can be in the following formats:
- String: audio file path
- Tuple: (wav, sr) result from torchaudio.load
- Dict: {"speaker1": path_or_tuple, "speaker2": path_or_tuple}
"""
if prompt_audio is None:
return None
try:
# Check if prompt_audio is a dictionary (containing speaker1 and speaker2)
if isinstance(prompt_audio, dict) and "speaker1" in prompt_audio and "speaker2" in prompt_audio:
# Process audio from both speakers separately
wav1, sr1 = _load_single_audio(prompt_audio["speaker1"])
wav2, sr2 = _load_single_audio(prompt_audio["speaker2"])
# Merge audio from both speakers
wav = merge_speaker_audios(wav1, sr1, wav2, sr2, target_sample_rate)
if wav is None:
return None
else:
# Single audio
wav, sr = _load_single_audio(prompt_audio)
# Resample to 16k
if sr != target_sample_rate:
wav = torchaudio.functional.resample(wav, sr, target_sample_rate)
# Ensure mono channel
if wav.shape[0] > 1:
wav = wav.mean(dim=0, keepdim=True) # Convert multi-channel to mono
if len(wav.shape) == 1:
wav = wav.unsqueeze(0)
return wav
except Exception as e:
print(f"Error loading audio data: {e}")
raise
def _load_single_audio(audio_input):
"""Load single audio, supports file path or (wav, sr) tuple
Args:
audio_input: String (file path) or tuple (wav, sr)
Returns:
tuple: (wav, sr)
"""
if isinstance(audio_input, tuple) and len(audio_input) == 2:
# Already a (wav, sr) tuple
wav, sr = audio_input
return wav, sr
elif isinstance(audio_input, str):
# Is a file path, needs to be loaded
wav, sr = torchaudio.load(audio_input)
return wav, sr
else:
raise ValueError(f"Unsupported audio input format: {type(audio_input)}")
def merge_speaker_audios(wav1, sr1, wav2, sr2, target_sample_rate=16000):
"""Merge audio data from two speakers"""
try:
# Process first audio
if sr1 != target_sample_rate:
wav1 = torchaudio.functional.resample(wav1, sr1, target_sample_rate)
# Ensure mono channel
if wav1.shape[0] > 1:
wav1 = wav1.mean(dim=0, keepdim=True) # Convert multi-channel to mono
if len(wav1.shape) == 1:
wav1 = wav1.unsqueeze(0)
# Process second audio
if sr2 != target_sample_rate:
wav2 = torchaudio.functional.resample(wav2, sr2, target_sample_rate)
# Ensure mono channel
if wav2.shape[0] > 1:
wav2 = wav2.mean(dim=0, keepdim=True) # Convert multi-channel to mono
if len(wav2.shape) == 1:
wav2 = wav2.unsqueeze(0)
# Concatenate audio
merged_wav = torch.cat([wav1, wav2], dim=1)
return merged_wav
except Exception as e:
print(f"Error merging audio: {e}")
raise
def process_inputs(tokenizer, spt, prompt, text, device, audio_data=None, max_channels=8, pad_token=1024):
seq = f"<|begin_of_style|>{prompt}<|end_of_style|>\n<|begin_of_text|>{text}<|end_of_text|>\n<|begin_of_speech|>"
inputs1 = np.array(tokenizer.encode(seq))
input_ids = np.full((inputs1.shape[0], max_channels), pad_token)
input_ids[:, 0] = inputs1
if audio_data is not None:
try:
# audio_data should now be a processed audio tensor
wav = audio_data
# Add fixed 5-second silence at the end of audio (using 16k sample rate)
silence_samples = int(SILENCE_DURATION * 16000)
silence = torch.zeros(wav.shape[0], silence_samples)
wav = torch.cat([wav, silence], dim=1)
with torch.no_grad():
# Use SPT encoding
encode_result = spt.encode([wav.squeeze().to(device)])
audio_token = encode_result["codes_list"][0].permute(1, 0).cpu().numpy() # Adjust dimension order
# similar to DAC encoding adjustment
audio_token[:, 0] = audio_token[:, 0] + 151665 # Keep this line if offset is needed, otherwise delete
input_ids = np.concatenate([input_ids, audio_token])[:-60]
except Exception as e:
print(f"Error processing audio data: {e}")
raise
return input_ids
def shifting_inputs(input_ids, tokenizer, pad_token=1024, max_channels=8):
seq_len = input_ids.shape[0]
new_seq_len = seq_len + max_channels - 1
shifted_input_ids = np.full((new_seq_len, max_channels), pad_token, dtype=np.int64)
shifted_input_ids[:, 0] = np.full(new_seq_len, tokenizer.pad_token_id, dtype=np.int64)
for i in range(max_channels):
shifted_input_ids[i : (seq_len + i), i] = input_ids[:, i]
return shifted_input_ids
def rpadding(input_ids, channels, tokenizer):
attention_masks = [np.ones(inputs.shape[0]) for inputs in input_ids]
max_length = max(ids.shape[0] for ids in input_ids)
padded_input_ids, padded_attns = [], []
for ids, attn in zip(input_ids, attention_masks):
pad_len = max_length - ids.shape[0]
input_pad = np.full((pad_len, channels), 1024)
input_pad[:, 0] = tokenizer.pad_token_id
padded_input_ids.append(np.concatenate([input_pad, ids]))
attn_pad = np.zeros(pad_len)
padded_attns.append(np.concatenate([attn_pad, attn]))
input_ids = torch.tensor(np.stack(padded_input_ids))
attention_mask = torch.tensor(np.stack(padded_attns))
return input_ids, attention_mask
def find_max_valid_positions(C: torch.Tensor, invalid_value=1024) -> torch.Tensor:
values = C[:, :, 1]
mask = (values != invalid_value)
reversed_mask = mask.flip(dims=[1])
reversed_indices = torch.argmax(reversed_mask.int(), dim=1)
seq_len = C.size(1)
original_indices = seq_len - 1 - reversed_indices
has_valid = mask.any(dim=1)
original_indices = torch.where(has_valid, original_indices, -1)
return original_indices
def normalize_text(text: str) -> str:
"""
Normalize multi-speaker script.
1. Don't preserve line breaks.
2. Remove brackets for non-speaker tags (if [] doesn't contain S1/S2...Sx format, remove the brackets themselves).
3. Remove decorative symbols: γγγγοΌοΌγγγγ"-ββ .
4. Internal punctuation οΌοΌοΌγ β οΌοΌonly allow οΌ and οΌγ
5. Multiple γ keep only the last one, others β οΌγ
6. Replace consecutive "ε" (>=2) with "(η¬)".
7. Auto-recognize [S1] / [S2] β¦ tags; if missing, treat as whole segment.
"""
# Replace [1], [2] etc. format with [S1], [S2] etc. format
text = re.sub(r'\[(\d+)\]', r'[S\1]', text)
# Remove decorative characters
remove_chars = "γγγγοΌοΌγγγγ""\"-ββ"
# Remove brackets for non-speaker tags (keep content, only remove brackets themselves)
text = re.sub(r'\[(?!S\d+\])([^\]]*)\]', r'\1', text)
# Use positive lookahead to split text by speaker tags (tags themselves are still preserved)
segments = re.split(r'(?=\[S\d+\])', text.replace("\n", " "))
normalized_lines = []
for seg in segments:
seg = seg.strip()
if not seg:
continue
# Extract tags
m = re.match(r'^(\[S\d+\])\s*(.*)', seg)
tag, content = m.groups() if m else ('', seg)
# Remove irrelevant symbols
content = re.sub(f"[{re.escape(remove_chars)}]", "", content)
# Handle consecutive "ε" characters: replace 2 or more with "(η¬)"
content = re.sub(r'ε{2,}', '(η¬)', content)
# First handle multi-character punctuation marks
content = content.replace('ββ', 'οΌ')
content = content.replace('β¦β¦', 'οΌ')
# Handle single-character internal punctuation marks
internal_punct_map = str.maketrans({
'οΌ': 'οΌ', '!': ',',
'οΌ': 'οΌ', ';': ',',
'οΌ': 'οΌ', ':': ',',
'γ': 'οΌ',
'οΌ': 'οΌ', '?': ','
})
content = content.translate(internal_punct_map)
content = content.strip()
# Keep only the final period
if len(content) > 1:
last_ch = "γ" if content[-1] == "οΌ" else ("." if content[-1] == "," else content[-1])
body = content[:-1].replace('γ', 'οΌ')
content = body + last_ch
normalized_lines.append(f"{tag}{content}".strip())
return "".join(normalized_lines)
def process_batch(batch_items, tokenizer, model, spt, device, system_prompt, start_idx, use_normalize=False):
"""Process a batch of data items and generate audio, return audio data and metadata"""
try:
# Prepare batch data
batch_size = len(batch_items)
texts = []
prompts = [system_prompt] * batch_size
prompt_audios = []
actual_texts_data = [] # Store actual text data used
print(f"Processing {batch_size} samples starting from index {start_idx}...")
# Extract text and audio from each sample
for i, item in enumerate(batch_items):
# Use new processing function
processed_item = process_jsonl_item(item)
text = processed_item["text"]
prompt_text = processed_item["prompt_text"]
# Merge text
full_text = prompt_text + text
original_full_text = full_text # Save original text
# Apply text normalization based on parameter
if use_normalize:
full_text = normalize_text(full_text)
# Replace speaker tags
final_text = full_text.replace("[S1]", "<speaker1>").replace("[S2]", "<speaker2>")
texts.append(final_text)
# Save actual text information used
actual_texts_data.append({
"index": start_idx + i,
"original_text": original_full_text,
"normalized_text": normalize_text(original_full_text) if use_normalize else None,
"final_text": final_text,
"use_normalize": use_normalize
})
# Get reference audio
prompt_audios.append(processed_item["prompt_audio"])
# Process inputs
input_ids_list = []
for i, (text, prompt, audio_path) in enumerate(zip(texts, prompts, prompt_audios)):
# Load audio data here
audio_data = load_audio_data(audio_path) if audio_path else None
inputs = process_inputs(tokenizer, spt, prompt, text, device, audio_data)
inputs = shifting_inputs(inputs, tokenizer)
input_ids_list.append(inputs)
# Pad batch inputs
input_ids, attention_mask = rpadding(input_ids_list, MAX_CHANNELS, tokenizer)
# Batch generation
print(f"Starting batch audio generation...")
start = input_ids.shape[1] - MAX_CHANNELS + 1
# Move inputs to GPU
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Generate model outputs
outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
)
print(f"Original outputs shape: {outputs.shape}")
print(f"Start value: {start}")
print(f"Shape after slicing: {outputs[:, start:].shape}")
print(f"MAX_CHANNELS: {MAX_CHANNELS}")
print(f"Calculated seq_len: {outputs.shape[1] - MAX_CHANNELS + 1}")
# Process outputs
outputs = outputs[:, start:]
seq_len = outputs.shape[1] - MAX_CHANNELS + 1
speech_ids = torch.full((outputs.shape[0], seq_len, MAX_CHANNELS), 0).to(device)
# Adjust output format
for j in range(MAX_CHANNELS):
speech_ids[..., j] = outputs[:, j : seq_len + j, j]
if j == 0:
speech_ids[..., j] = speech_ids[..., j] - 151665
# Find valid positions for each sample
li = find_max_valid_positions(speech_ids)
# Store audio result data
audio_results = []
# Process batch sample results individually
for i in range(batch_size):
try:
# Extract valid speech tokens
end_idx = li[i] + 1
if end_idx <= 0:
print(f"Sample {start_idx + i} has no valid speech tokens")
audio_results.append(None)
continue
this_speech_id = speech_ids[i, :end_idx]
print(f"Speech token shape for sample {start_idx + i}: {this_speech_id.shape}")
# Decode generated audio
with torch.no_grad():
codes_list = [this_speech_id.permute(1, 0)] # Convert to SPT expected format
decode_result = spt.decode(codes_list, overlap_seconds=10)
audio_result = decode_result["syn_wav_list"][0].cpu().detach()
if audio_result.ndim == 1: # If 1D [samples]
audio_result = audio_result.unsqueeze(0) # Convert to 2D [1, samples]
# Save audio data instead of file path
audio_results.append({
"audio_data": audio_result,
"sample_rate": spt.output_sample_rate,
"index": start_idx + i
})
print(f"Audio generation completed: sample {start_idx + i}")
except Exception as e:
print(f"Error processing sample {start_idx + i}: {str(e)}, skipping...")
import traceback
traceback.print_exc()
audio_results.append(None)
# Clean up GPU memory
torch.cuda.empty_cache()
# Return text data and audio data
return actual_texts_data, audio_results
except Exception as e:
print(f"Error during batch processing: {str(e)}")
raise
|