detect_English_language_speaking / video_accent_analyzer.py
ferhatbou's picture
Fix import issue
98a96df
"""
Enhanced Video Accent Analyzer
Supports YouTube, Loom, direct MP4 links, and local video files with improved error handling and features.
"""
import os
import sys
import tempfile
import subprocess
import requests
import json
import warnings
import time
from pathlib import Path
from urllib.parse import urlparse
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
try:
from IPython.display import display, HTML, Audio
IPYTHON_AVAILABLE = True
except ImportError:
IPYTHON_AVAILABLE = False
# Create dummy display functions
def display(*args, **kwargs): pass
def HTML(*args, **kwargs): pass
def Audio(*args, **kwargs): pass
# Suppress warnings for cleaner output
warnings.filterwarnings('ignore')
def install_if_missing(packages):
"""Install packages if they're not already available in Kaggle"""
for package in packages:
try:
package_name = package.split('==')[0].replace('-', '_')
if package_name == 'yt_dlp':
package_name = 'yt_dlp'
__import__(package_name)
except ImportError:
print(f"Installing {package}...")
subprocess.check_call([sys.executable, "-m", "pip", "install", package, "--quiet"])
# Required packages for Kaggle
required_packages = [
"yt-dlp",
"librosa",
"soundfile",
"transformers",
"torch",
"matplotlib",
"seaborn"
]
print("๐Ÿ”ง Setting up environment...")
install_if_missing(required_packages)
# Now import the packages
import torch
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
import librosa
import soundfile as sf
import yt_dlp
class VideoAccentAnalyzer:
def __init__(self, model_name="dima806/multiple_accent_classification"):
"""Initialize the accent analyzer for Kaggle environment"""
self.model_name = model_name
# Enhanced accent labels with better mapping
self.accent_labels = [
"british", "canadian", "us", "indian", "australian", "neutral"
]
self.accent_display_names = {
'british': '๐Ÿ‡ฌ๐Ÿ‡ง British English',
'us': '๐Ÿ‡บ๐Ÿ‡ธ American English',
'australian': '๐Ÿ‡ฆ๐Ÿ‡บ Australian English',
'canadian': '๐Ÿ‡จ๐Ÿ‡ฆ Canadian English',
'indian': '๐Ÿ‡ฎ๐Ÿ‡ณ Indian English',
'neutral': '๐ŸŒ Neutral English'
}
self.temp_dir = "/tmp/accent_analyzer"
os.makedirs(self.temp_dir, exist_ok=True)
self.model_loaded = False
self._load_model()
def _load_model(self):
"""Load the accent classification model with error handling"""
print("๐Ÿค– Loading accent classification model...")
try:
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(self.model_name)
self.model = Wav2Vec2ForSequenceClassification.from_pretrained(self.model_name)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
self.model.eval() # Set to evaluation mode
self.model_loaded = True
print(f"โœ… Model loaded successfully on {self.device}")
except Exception as e:
print(f"โŒ Error loading model: {e}")
print("๐Ÿ’ก Tip: Check your internet connection and Kaggle environment setup")
raise
def _validate_url(self, url):
"""Validate and normalize URL"""
if not url or not isinstance(url, str):
return False, "Invalid URL format"
url = url.strip()
if not url.startswith(('http://', 'https://')):
return False, "URL must start with http:// or https://"
return True, url
def trim_video(self, input_path, output_path, duration):
try:
cmd = ['ffmpeg', '-i', input_path, '-t', str(duration), '-c', 'copy', output_path, '-y']
result = subprocess.run(cmd, capture_output=True, text=True, timeout=60)
if result.returncode == 0:
print(f"โœ‚๏ธ Trimmed video to {duration} seconds")
return output_path
else:
print(f"โŒ Trimming failed: {result.stderr}")
return input_path # fallback to original
except Exception as e:
print(f"โŒ Trimming exception: {e}")
return input_path
def _get_youtube_cookies(self):
"""Get YouTube cookies from browser"""
import browser_cookie3
try:
# Try Firefox first
cookies = browser_cookie3.firefox(domain_name='.youtube.com')
except:
try:
# Try Chrome as fallback
cookies = browser_cookie3.chrome(domain_name='.youtube.com')
except:
print("โš ๏ธ Could not get cookies from browser")
return None
return cookies
def download_video(self, url, max_duration=None):
"""Download video using yt-dlp with cookie support"""
is_valid, result = self._validate_url(url)
if not is_valid:
print(f"โŒ {result}")
return None
url = result
output_path = os.path.join(self.temp_dir, "video.%(ext)s")
# Enhanced yt-dlp options
ydl_opts = {
'outtmpl': output_path,
'format': 'worst[ext=mp4]/worst',
'quiet': False,
'no_warnings': False,
'socket_timeout': 60,
'retries': 5
}
# Add cookies for YouTube URLs
if 'youtube.com' in url or 'youtu.be' in url:
cookies = self._get_youtube_cookies()
if cookies:
cookie_file = os.path.join(self.temp_dir, 'cookies.txt')
with open(cookie_file, 'w') as f:
f.write('# Netscape HTTP Cookie File\n')
for cookie in cookies:
f.write(f'.youtube.com\tTRUE\t/\tFALSE\t{cookie.expires}\t{cookie.name}\t{cookie.value}\n')
ydl_opts['cookiefile'] = cookie_file
if max_duration:
ydl_opts['match_filter'] = lambda info: None if info.get('duration', 0) <= 200000 else "Video too long"
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
print(f"๐Ÿ“ฅ Downloading video from: {url}")
start_time = time.time()
# Get video info first
try:
info = ydl.extract_info(url, download=False)
print(f"๐Ÿ“บ Found video: {info.get('title', 'Unknown')} ({info.get('duration', 0)}s)")
except Exception as e:
print(f"โš ๏ธ Could not extract video info: {e}")
# Download the video
ydl.download([url])
download_time = time.time() - start_time
# Find downloaded file (try multiple patterns)
video_path = None
for file in os.listdir(self.temp_dir):
if file.startswith("video.") and os.path.getsize(
os.path.join(self.temp_dir, file)) > 1000: # At least 1KB
potential_path = os.path.join(self.temp_dir, file)
print(f"๐Ÿ“ Found downloaded file: {file} ({os.path.getsize(potential_path) / 1024:.1f}KB)")
# Try basic validation - if ffprobe fails, still try to extract audio
if self._is_valid_video(potential_path):
print(f"โœ… Video validation passed: {file}")
video_path = potential_path
break
else:
print(f"โš ๏ธ Video validation failed, but continuing with: {file}")
video_path = potential_path # Still try to use it
break
if video_path:
print(f"โœ… Downloaded video: {os.path.basename(video_path)} ({download_time:.1f}s)")
return video_path
else:
print("โŒ No video files found after download")
return None
except Exception as e:
print(f"โš ๏ธ yt-dlp failed: {e}")
return self._try_direct_download(url)
def _is_valid_video(self, file_path):
"""Verify video file has valid structure (more lenient)"""
try:
# First check if file exists and has reasonable size
if not os.path.exists(file_path) or os.path.getsize(file_path) < 1000:
return False
# Try ffprobe with more lenient settings
result = subprocess.run(
['ffprobe', '-v', 'quiet', '-print_format', 'json', '-show_format', file_path],
capture_output=True, text=True, timeout=15
)
if result.returncode == 0:
try:
# Try to parse the JSON output
info = json.loads(result.stdout)
# Check if we have format information
if 'format' in info and 'duration' in info['format']:
return True
except json.JSONDecodeError:
pass
# If ffprobe fails, try a simpler check - just see if ffmpeg can read it
result2 = subprocess.run(
['ffmpeg', '-i', file_path, '-t', '1', '-f', 'null', '-', '-v', 'quiet'],
capture_output=True, text=True, timeout=15
)
return result2.returncode == 0
except subprocess.TimeoutExpired:
print("โš ๏ธ Video validation timed out, assuming valid")
return True # If validation times out, assume it's valid
except Exception as e:
print(f"โš ๏ธ Video validation error: {e}, assuming valid")
return True # If validation fails, assume it's valid and let audio extraction handle it
def _try_direct_download(self, url):
"""Enhanced fallback for direct video URLs"""
try:
print("๐Ÿ”„ Trying direct download...")
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
}
response = requests.get(url, stream=True, timeout=60, headers=headers)
response.raise_for_status()
content_type = response.headers.get("Content-Type", "")
if "text/html" in content_type:
print("โš ๏ธ Received HTML instead of video - check URL access")
return None
video_path = os.path.join(self.temp_dir, "video.mp4")
file_size = 0
with open(video_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
file_size += len(chunk)
print(f"๐Ÿ“ Downloaded {file_size / (1024 * 1024):.1f} MB")
if self._is_valid_video(video_path):
print("โœ… Direct download successful")
return video_path
else:
print("โŒ Downloaded file is not a valid video")
return None
except Exception as e:
print(f"โŒ Direct download failed: {e}")
return None
def extract_audio(self, video_path, max_duration=None):
"""Extract audio with improved error handling and progress"""
audio_path = os.path.join(self.temp_dir, "audio.wav")
# Enhanced ffmpeg command with better error handling
cmd = ['ffmpeg', '-i', video_path, '-vn', '-acodec', 'pcm_s16le',
'-ar', '16000', '-ac', '1', '-y', '-v', 'warning']
if max_duration:
cmd.extend(['-t', str(max_duration)])
cmd.append(audio_path)
try:
print(f"๐ŸŽต Extracting audio (max {max_duration}s)...")
start_time = time.time()
# Run ffmpeg with more detailed output for debugging
result = subprocess.run(cmd, capture_output=True, text=True, timeout=180)
extraction_time = time.time() - start_time
if result.returncode == 0 and os.path.exists(audio_path) and os.path.getsize(audio_path) > 1000:
file_size = os.path.getsize(audio_path) / (1024 * 1024)
print(f"โœ… Audio extracted successfully ({extraction_time:.1f}s, {file_size:.1f}MB)")
return audio_path
else:
print(f"โŒ FFmpeg stderr: {result.stderr}")
print(f"โŒ FFmpeg stdout: {result.stdout}")
# Try alternative extraction method
print("๐Ÿ”„ Trying alternative audio extraction...")
cmd_alt = ['ffmpeg', '-i', video_path, '-vn', '-acodec', 'libmp3lame',
'-ar', '16000', '-ac', '1', '-y', '-v', 'warning']
if max_duration:
cmd_alt.extend(['-t', str(max_duration)])
audio_path_alt = os.path.join(self.temp_dir, "audio.mp3")
cmd_alt.append(audio_path_alt)
result_alt = subprocess.run(cmd_alt, capture_output=True, text=True, timeout=180)
if result_alt.returncode == 0 and os.path.exists(audio_path_alt):
# Convert mp3 to wav
cmd_convert = ['ffmpeg', '-i', audio_path_alt, '-ar', '16000', '-ac', '1',
audio_path, '-y', '-v', 'quiet']
result_convert = subprocess.run(cmd_convert, capture_output=True, text=True, timeout=60)
if result_convert.returncode == 0 and os.path.exists(audio_path):
file_size = os.path.getsize(audio_path) / (1024 * 1024)
print(f"โœ… Alternative extraction successful ({file_size:.1f}MB)")
return audio_path
raise Exception(f"Both extraction methods failed. FFmpeg error: {result.stderr}")
except subprocess.TimeoutExpired:
print("โŒ Audio extraction timed out")
return None
except Exception as e:
print(f"โŒ Audio extraction failed: {e}")
return None
def classify_accent(self, audio_path):
"""Enhanced accent classification with better preprocessing"""
if not self.model_loaded:
print("โŒ Model not loaded properly")
return None
try:
print("๐Ÿ” Loading and preprocessing audio...")
audio, sr = librosa.load(audio_path, sr=16000)
# Enhanced preprocessing
if len(audio) == 0:
print("โŒ Empty audio file")
return None
# Remove silence from beginning and end
audio_trimmed, _ = librosa.effects.trim(audio, top_db=20)
# Use multiple chunks for better accuracy if audio is long
chunk_size = 16000 * 20 # 20 seconds chunks
chunks = []
if len(audio_trimmed) > chunk_size:
# Split into overlapping chunks
step_size = chunk_size // 2
for i in range(0, len(audio_trimmed) - chunk_size + 1, step_size):
chunks.append(audio_trimmed[i:i + chunk_size])
if len(audio_trimmed) % step_size != 0:
chunks.append(audio_trimmed[-chunk_size:])
else:
chunks = [audio_trimmed]
print(f"๐ŸŽฏ Analyzing {len(chunks)} audio chunk(s)...")
all_predictions = []
for i, chunk in enumerate(chunks[:3]): # Limit to 3 chunks for efficiency
inputs = self.feature_extractor(
chunk,
sampling_rate=16000,
return_tensors="pt",
padding=True,
max_length=16000 * 20,
truncation=True
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probabilities = torch.nn.functional.softmax(logits, dim=-1)
all_predictions.append(probabilities[0].cpu().numpy())
# Average predictions across chunks
avg_probabilities = sum(all_predictions) / len(all_predictions)
predicted_idx = avg_probabilities.argmax()
predicted_idx = min(predicted_idx, len(self.accent_labels) - 1)
# Calculate English confidence (exclude 'neutral' for this calculation)
english_accents = ["british", "canadian", "us", "australian", "indian"]
english_confidence = sum(
avg_probabilities[i] * 100
for i, label in enumerate(self.accent_labels)
if label in english_accents
)
results = {
'predicted_accent': self.accent_labels[predicted_idx],
'accent_confidence': avg_probabilities[predicted_idx] * 100,
'english_confidence': english_confidence,
'audio_duration': len(audio) / 16000,
'processed_duration': len(audio_trimmed) / 16000,
'chunks_analyzed': len(all_predictions),
'all_probabilities': {
self.accent_labels[i]: avg_probabilities[i] * 100
for i in range(len(self.accent_labels))
},
'is_english_likely': english_confidence > 60,
'audio_quality_score': self._assess_audio_quality(audio_trimmed)
}
print(f"โœ… Classification complete ({results['chunks_analyzed']} chunks)")
return results
except Exception as e:
print(f"โŒ Classification failed: {e}")
return None
def _assess_audio_quality(self, audio):
"""Assess audio quality for better result interpretation"""
try:
# Simple quality metrics
rms_energy = librosa.feature.rms(y=audio)[0].mean()
zero_crossing_rate = librosa.feature.zero_crossing_rate(audio)[0].mean()
# Normalize to 0-100 scale
quality_score = min(100, (rms_energy * 1000 + (1 - zero_crossing_rate) * 50))
return max(0, quality_score)
except:
return 50 # Default moderate quality
def analyze_video_url(self, url, max_duration=30):
"""Complete pipeline with enhanced error handling"""
print(f"๐ŸŽฌ Starting analysis of: {url}")
print(f"โฑ๏ธ Max duration: {max_duration} seconds")
video_path = self.download_video(url, max_duration)
if not video_path:
return {"error": "Failed to download video", "url": url}
audio_path = self.extract_audio(video_path, max_duration)
if not audio_path:
return {"error": "Failed to extract audio", "url": url}
results = self.classify_accent(audio_path)
if not results:
return {"error": "Failed to classify accent", "url": url}
results.update({
'source_url': url,
'video_file': os.path.basename(video_path),
'audio_file': os.path.basename(audio_path),
'analysis_timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
})
return results
def analyze_local_video(self, file_path, max_duration=30):
"""Enhanced local video analysis"""
print(f"๐ŸŽฌ Starting analysis of local file: {file_path}")
print(f"โฑ๏ธ Max duration: {max_duration} seconds")
if not os.path.isfile(file_path):
return {"error": f"File not found: {file_path}"}
# Check file size
file_size = os.path.getsize(file_path) / (1024 * 1024) # MB
print(f"๐Ÿ“ File size: {file_size:.1f} MB")
video_filename = os.path.basename(file_path)
print(f"โœ… Using local video: {video_filename}")
audio_path = self.extract_audio(file_path, max_duration)
if not audio_path:
return {"error": "Failed to extract audio"}
results = self.classify_accent(audio_path)
if not results:
return {"error": "Failed to classify accent"}
results.update({
'source_file': file_path,
'video_file': video_filename,
'audio_file': os.path.basename(audio_path),
'file_size_mb': file_size,
'is_local': True,
'analysis_timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
})
return results
def display_results(self, results):
"""Display results in text format"""
if 'error' in results:
print(f"โŒ {results['error']}")
return
accent = results['predicted_accent']
confidence = results['accent_confidence']
english_conf = results['english_confidence']
duration = results['audio_duration']
processed_duration = results.get('processed_duration', duration)
quality_score = results.get('audio_quality_score', 50)
accent_display = self.accent_display_names.get(accent, accent.title())
print(f"\n=== Accent Analysis Results ===")
print(f"Predicted Accent: {accent_display}")
print(f"Confidence: {confidence:.1f}%")
print(f"English Confidence: {english_conf:.1f}%")
print(f"Audio Duration: {duration:.1f}s")
print(f"Processed Duration: {processed_duration:.1f}s")
print(f"Audio Quality: {quality_score:.0f}/100")
print(f"Chunks Analyzed: {results.get('chunks_analyzed', 1)}")
def _plot_probabilities(self, probabilities):
"""Create a visualization of accent probabilities"""
try:
plt.figure(figsize=(10, 6))
accents = [self.accent_display_names.get(acc, acc.title()) for acc in probabilities.keys()]
probs = list(probabilities.values())
# Create color map
colors = ['#4CAF50' if p == max(probs) else '#2196F3' if p >= 20 else '#FFC107' if p >= 10 else '#9E9E9E'
for p in probs]
bars = plt.bar(accents, probs, color=colors, alpha=0.8, edgecolor='black', linewidth=0.5)
plt.title('Accent Classification Probabilities', fontsize=16, fontweight='bold', pad=20)
plt.xlabel('Accent Type', fontsize=12)
plt.ylabel('Probability (%)', fontsize=12)
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y', alpha=0.3)
# Add value labels on bars
for bar, prob in zip(bars, probs):
height = bar.get_height()
plt.text(bar.get_x() + bar.get_width() / 2., height + 0.5,
f'{prob:.1f}%', ha='center', va='bottom', fontweight='bold')
plt.tight_layout()
plt.show()
except Exception as e:
print(f"โš ๏ธ Could not create visualization: {e}")
def batch_analyze(self, urls, max_duration=30):
"""Analyze multiple videos with progress tracking"""
results = []
failed_count = 0
print(f"๐Ÿš€ Starting batch analysis of {len(urls)} videos")
for i, url in enumerate(urls, 1):
print(f"\n{'=' * 60}")
print(f"Processing video {i}/{len(urls)}")
result = self.analyze_video_url(url, max_duration)
result['video_index'] = i
if 'error' in result:
failed_count += 1
print(f"โŒ Failed: {result['error']}")
else:
print(f"โœ… Success: {result['predicted_accent']} ({result['accent_confidence']:.1f}%)")
results.append(result)
self.display_results(result)
# Small delay to prevent overwhelming servers
if i < len(urls):
time.sleep(1)
# Summary
success_count = len(urls) - failed_count
print(f"\n๐Ÿ“ˆ Batch Analysis Summary:")
print(f" โœ… Successful: {success_count}/{len(urls)}")
print(f" โŒ Failed: {failed_count}/{len(urls)}")
return results
def export_results(self, results, filename="accent_analysis_results.json"):
"""Export results to JSON file"""
try:
with open(filename, 'w') as f:
json.dump(results, f, indent=2, default=str)
print(f"๐Ÿ’พ Results exported to {filename}")
except Exception as e:
print(f"โŒ Export failed: {e}")
def cleanup(self):
"""Clean up temporary files"""
try:
import shutil
if os.path.exists(self.temp_dir):
shutil.rmtree(self.temp_dir, ignore_errors=True)
print("๐Ÿงน Cleaned up temporary files")
except Exception as e:
print(f"โš ๏ธ Cleanup warning: {e}")
# Helper Functions
def show_examples():
"""Show usage examples"""
examples = {
"Loom": "https://www.loom.com/share/abc123def456",
"Direct MP4": "https://example.com/video.mp4",
"Local File": "/local/input/dataset/video.mp4"
}
print("\n๐ŸŽฏ Supported Video Formats:")
for platform, example in examples.items():
print(f" {platform:12}: {example}")
print("\n๐Ÿ’ก Usage Tips:")
print(" โ€ข Keep videos under 2 minutes for best results")
print(" โ€ข Ensure clear audio quality")
print(" โ€ข Multiple speakers may affect accuracy")
print(" โ€ข Model works best with sustained speech")
def quick_test_url():
"""Interactive test for video URLs"""
print("๐Ÿ” Quick Test Mode for Video URLs")
print("๐ŸŽฏ Supported: Loom, Direct MP4 links")
print("๐Ÿ’ก Examples:")
print(" Loom: https://www.loom.com/share/VIDEO_ID")
print(" Direct: https://example.com/video.mp4")
url = input("\n๐Ÿ“Ž Enter your video URL (Loom, MP4 , etc.): ").strip()
if not url:
print("โŒ No URL provided.")
return None
max_duration = input("โฑ๏ธ Max duration in seconds (default 20): ").strip()
try:
max_duration = int(max_duration) if max_duration else 20
except ValueError:
max_duration = 20
print(f"โš ๏ธ Invalid duration, using {max_duration} seconds")
analyzer = VideoAccentAnalyzer()
try:
print(f"\n๐Ÿš€ Starting analysis...")
results = analyzer.analyze_video_url(url, max_duration=max_duration)
analyzer.display_results(results)
return results
finally:
analyzer.cleanup()
def demo_analysis():
"""Demo function with example usage"""
print("๐ŸŽฌ Video Accent Analyzer Demo")
print("=" * 50)
# Initialize analyzer
analyzer = VideoAccentAnalyzer()
# Example analysis (replace with actual video URL)
example_url = "https://example.com/video.mp4" # Replace with real URL
print(f"\n๐ŸŽฏ Example: Analyzing {example_url}")
# Uncomment to run actual analysis
# results = analyzer.analyze_video_url(example_url, max_duration=30)
# analyzer.display_results(results)
# analyzer.cleanup()
print("\n๐Ÿ“š To use the analyzer:")
print("1. analyzer = VideoAccentAnalyzer()")
print("2. results = analyzer.analyze_video_url('your-url', max_duration=30)")
print("3. analyzer.display_results(results)")
print("4. analyzer.cleanup() # Clean up temporary files")
# Show examples on import
show_examples()