File size: 27,331 Bytes
5cdbd8d 6cf7dc2 6bced3b 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 4d8c4e0 6cf7dc2 5cdbd8d 0292df6 5cdbd8d 4d8c4e0 6cf7dc2 4d8c4e0 6cf7dc2 4d8c4e0 6cf7dc2 4d8c4e0 5cdbd8d 4d8c4e0 6cf7dc2 4d8c4e0 6cf7dc2 0292df6 6cf7dc2 5cdbd8d 6cf7dc2 5cdbd8d 6cf7dc2 0292df6 5cdbd8d 0292df6 5cdbd8d 6cf7dc2 5cdbd8d 6cf7dc2 5cdbd8d 6cf7dc2 5cdbd8d 6cf7dc2 5cdbd8d 6cf7dc2 5cdbd8d 6cf7dc2 5cdbd8d 6cf7dc2 5cdbd8d 6cf7dc2 0292df6 6cf7dc2 5cdbd8d 6cf7dc2 5cdbd8d 6cf7dc2 5cdbd8d 6cf7dc2 5cdbd8d 0292df6 6cf7dc2 5cdbd8d 0292df6 5cdbd8d 0292df6 5cdbd8d 0292df6 5cdbd8d 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 98a96df 6cf7dc2 0292df6 5cdbd8d 98a96df 5cdbd8d 98a96df 5cdbd8d 6cf7dc2 5cdbd8d 6cf7dc2 5cdbd8d 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 6cf7dc2 0292df6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
"""
Enhanced Video Accent Analyzer
Supports YouTube, Loom, direct MP4 links, and local video files with improved error handling and features.
"""
import os
import sys
import tempfile
import subprocess
import requests
import json
import warnings
import time
from pathlib import Path
from urllib.parse import urlparse
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
try:
from IPython.display import display, HTML, Audio
IPYTHON_AVAILABLE = True
except ImportError:
IPYTHON_AVAILABLE = False
# Create dummy display functions
def display(*args, **kwargs): pass
def HTML(*args, **kwargs): pass
def Audio(*args, **kwargs): pass
# Suppress warnings for cleaner output
warnings.filterwarnings('ignore')
def install_if_missing(packages):
"""Install packages if they're not already available in Kaggle"""
for package in packages:
try:
package_name = package.split('==')[0].replace('-', '_')
if package_name == 'yt_dlp':
package_name = 'yt_dlp'
__import__(package_name)
except ImportError:
print(f"Installing {package}...")
subprocess.check_call([sys.executable, "-m", "pip", "install", package, "--quiet"])
# Required packages for Kaggle
required_packages = [
"yt-dlp",
"librosa",
"soundfile",
"transformers",
"torch",
"matplotlib",
"seaborn"
]
print("🔧 Setting up environment...")
install_if_missing(required_packages)
# Now import the packages
import torch
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
import librosa
import soundfile as sf
import yt_dlp
class VideoAccentAnalyzer:
def __init__(self, model_name="dima806/multiple_accent_classification"):
"""Initialize the accent analyzer for Kaggle environment"""
self.model_name = model_name
# Enhanced accent labels with better mapping
self.accent_labels = [
"british", "canadian", "us", "indian", "australian", "neutral"
]
self.accent_display_names = {
'british': '🇬🇧 British English',
'us': '🇺🇸 American English',
'australian': '🇦🇺 Australian English',
'canadian': '🇨🇦 Canadian English',
'indian': '🇮🇳 Indian English',
'neutral': '🌐 Neutral English'
}
self.temp_dir = "/tmp/accent_analyzer"
os.makedirs(self.temp_dir, exist_ok=True)
self.model_loaded = False
self._load_model()
def _load_model(self):
"""Load the accent classification model with error handling"""
print("🤖 Loading accent classification model...")
try:
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(self.model_name)
self.model = Wav2Vec2ForSequenceClassification.from_pretrained(self.model_name)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
self.model.eval() # Set to evaluation mode
self.model_loaded = True
print(f"✅ Model loaded successfully on {self.device}")
except Exception as e:
print(f"❌ Error loading model: {e}")
print("💡 Tip: Check your internet connection and Kaggle environment setup")
raise
def _validate_url(self, url):
"""Validate and normalize URL"""
if not url or not isinstance(url, str):
return False, "Invalid URL format"
url = url.strip()
if not url.startswith(('http://', 'https://')):
return False, "URL must start with http:// or https://"
return True, url
def trim_video(self, input_path, output_path, duration):
try:
cmd = ['ffmpeg', '-i', input_path, '-t', str(duration), '-c', 'copy', output_path, '-y']
result = subprocess.run(cmd, capture_output=True, text=True, timeout=60)
if result.returncode == 0:
print(f"✂️ Trimmed video to {duration} seconds")
return output_path
else:
print(f"❌ Trimming failed: {result.stderr}")
return input_path # fallback to original
except Exception as e:
print(f"❌ Trimming exception: {e}")
return input_path
def _get_youtube_cookies(self):
"""Get YouTube cookies from browser"""
import browser_cookie3
try:
# Try Firefox first
cookies = browser_cookie3.firefox(domain_name='.youtube.com')
except:
try:
# Try Chrome as fallback
cookies = browser_cookie3.chrome(domain_name='.youtube.com')
except:
print("⚠️ Could not get cookies from browser")
return None
return cookies
def download_video(self, url, max_duration=None):
"""Download video using yt-dlp with cookie support"""
is_valid, result = self._validate_url(url)
if not is_valid:
print(f"❌ {result}")
return None
url = result
output_path = os.path.join(self.temp_dir, "video.%(ext)s")
# Enhanced yt-dlp options
ydl_opts = {
'outtmpl': output_path,
'format': 'worst[ext=mp4]/worst',
'quiet': False,
'no_warnings': False,
'socket_timeout': 60,
'retries': 5
}
# Add cookies for YouTube URLs
if 'youtube.com' in url or 'youtu.be' in url:
cookies = self._get_youtube_cookies()
if cookies:
cookie_file = os.path.join(self.temp_dir, 'cookies.txt')
with open(cookie_file, 'w') as f:
f.write('# Netscape HTTP Cookie File\n')
for cookie in cookies:
f.write(f'.youtube.com\tTRUE\t/\tFALSE\t{cookie.expires}\t{cookie.name}\t{cookie.value}\n')
ydl_opts['cookiefile'] = cookie_file
if max_duration:
ydl_opts['match_filter'] = lambda info: None if info.get('duration', 0) <= 200000 else "Video too long"
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
print(f"📥 Downloading video from: {url}")
start_time = time.time()
# Get video info first
try:
info = ydl.extract_info(url, download=False)
print(f"📺 Found video: {info.get('title', 'Unknown')} ({info.get('duration', 0)}s)")
except Exception as e:
print(f"⚠️ Could not extract video info: {e}")
# Download the video
ydl.download([url])
download_time = time.time() - start_time
# Find downloaded file (try multiple patterns)
video_path = None
for file in os.listdir(self.temp_dir):
if file.startswith("video.") and os.path.getsize(
os.path.join(self.temp_dir, file)) > 1000: # At least 1KB
potential_path = os.path.join(self.temp_dir, file)
print(f"📁 Found downloaded file: {file} ({os.path.getsize(potential_path) / 1024:.1f}KB)")
# Try basic validation - if ffprobe fails, still try to extract audio
if self._is_valid_video(potential_path):
print(f"✅ Video validation passed: {file}")
video_path = potential_path
break
else:
print(f"⚠️ Video validation failed, but continuing with: {file}")
video_path = potential_path # Still try to use it
break
if video_path:
print(f"✅ Downloaded video: {os.path.basename(video_path)} ({download_time:.1f}s)")
return video_path
else:
print("❌ No video files found after download")
return None
except Exception as e:
print(f"⚠️ yt-dlp failed: {e}")
return self._try_direct_download(url)
def _is_valid_video(self, file_path):
"""Verify video file has valid structure (more lenient)"""
try:
# First check if file exists and has reasonable size
if not os.path.exists(file_path) or os.path.getsize(file_path) < 1000:
return False
# Try ffprobe with more lenient settings
result = subprocess.run(
['ffprobe', '-v', 'quiet', '-print_format', 'json', '-show_format', file_path],
capture_output=True, text=True, timeout=15
)
if result.returncode == 0:
try:
# Try to parse the JSON output
info = json.loads(result.stdout)
# Check if we have format information
if 'format' in info and 'duration' in info['format']:
return True
except json.JSONDecodeError:
pass
# If ffprobe fails, try a simpler check - just see if ffmpeg can read it
result2 = subprocess.run(
['ffmpeg', '-i', file_path, '-t', '1', '-f', 'null', '-', '-v', 'quiet'],
capture_output=True, text=True, timeout=15
)
return result2.returncode == 0
except subprocess.TimeoutExpired:
print("⚠️ Video validation timed out, assuming valid")
return True # If validation times out, assume it's valid
except Exception as e:
print(f"⚠️ Video validation error: {e}, assuming valid")
return True # If validation fails, assume it's valid and let audio extraction handle it
def _try_direct_download(self, url):
"""Enhanced fallback for direct video URLs"""
try:
print("🔄 Trying direct download...")
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
}
response = requests.get(url, stream=True, timeout=60, headers=headers)
response.raise_for_status()
content_type = response.headers.get("Content-Type", "")
if "text/html" in content_type:
print("⚠️ Received HTML instead of video - check URL access")
return None
video_path = os.path.join(self.temp_dir, "video.mp4")
file_size = 0
with open(video_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
file_size += len(chunk)
print(f"📁 Downloaded {file_size / (1024 * 1024):.1f} MB")
if self._is_valid_video(video_path):
print("✅ Direct download successful")
return video_path
else:
print("❌ Downloaded file is not a valid video")
return None
except Exception as e:
print(f"❌ Direct download failed: {e}")
return None
def extract_audio(self, video_path, max_duration=None):
"""Extract audio with improved error handling and progress"""
audio_path = os.path.join(self.temp_dir, "audio.wav")
# Enhanced ffmpeg command with better error handling
cmd = ['ffmpeg', '-i', video_path, '-vn', '-acodec', 'pcm_s16le',
'-ar', '16000', '-ac', '1', '-y', '-v', 'warning']
if max_duration:
cmd.extend(['-t', str(max_duration)])
cmd.append(audio_path)
try:
print(f"🎵 Extracting audio (max {max_duration}s)...")
start_time = time.time()
# Run ffmpeg with more detailed output for debugging
result = subprocess.run(cmd, capture_output=True, text=True, timeout=180)
extraction_time = time.time() - start_time
if result.returncode == 0 and os.path.exists(audio_path) and os.path.getsize(audio_path) > 1000:
file_size = os.path.getsize(audio_path) / (1024 * 1024)
print(f"✅ Audio extracted successfully ({extraction_time:.1f}s, {file_size:.1f}MB)")
return audio_path
else:
print(f"❌ FFmpeg stderr: {result.stderr}")
print(f"❌ FFmpeg stdout: {result.stdout}")
# Try alternative extraction method
print("🔄 Trying alternative audio extraction...")
cmd_alt = ['ffmpeg', '-i', video_path, '-vn', '-acodec', 'libmp3lame',
'-ar', '16000', '-ac', '1', '-y', '-v', 'warning']
if max_duration:
cmd_alt.extend(['-t', str(max_duration)])
audio_path_alt = os.path.join(self.temp_dir, "audio.mp3")
cmd_alt.append(audio_path_alt)
result_alt = subprocess.run(cmd_alt, capture_output=True, text=True, timeout=180)
if result_alt.returncode == 0 and os.path.exists(audio_path_alt):
# Convert mp3 to wav
cmd_convert = ['ffmpeg', '-i', audio_path_alt, '-ar', '16000', '-ac', '1',
audio_path, '-y', '-v', 'quiet']
result_convert = subprocess.run(cmd_convert, capture_output=True, text=True, timeout=60)
if result_convert.returncode == 0 and os.path.exists(audio_path):
file_size = os.path.getsize(audio_path) / (1024 * 1024)
print(f"✅ Alternative extraction successful ({file_size:.1f}MB)")
return audio_path
raise Exception(f"Both extraction methods failed. FFmpeg error: {result.stderr}")
except subprocess.TimeoutExpired:
print("❌ Audio extraction timed out")
return None
except Exception as e:
print(f"❌ Audio extraction failed: {e}")
return None
def classify_accent(self, audio_path):
"""Enhanced accent classification with better preprocessing"""
if not self.model_loaded:
print("❌ Model not loaded properly")
return None
try:
print("🔍 Loading and preprocessing audio...")
audio, sr = librosa.load(audio_path, sr=16000)
# Enhanced preprocessing
if len(audio) == 0:
print("❌ Empty audio file")
return None
# Remove silence from beginning and end
audio_trimmed, _ = librosa.effects.trim(audio, top_db=20)
# Use multiple chunks for better accuracy if audio is long
chunk_size = 16000 * 20 # 20 seconds chunks
chunks = []
if len(audio_trimmed) > chunk_size:
# Split into overlapping chunks
step_size = chunk_size // 2
for i in range(0, len(audio_trimmed) - chunk_size + 1, step_size):
chunks.append(audio_trimmed[i:i + chunk_size])
if len(audio_trimmed) % step_size != 0:
chunks.append(audio_trimmed[-chunk_size:])
else:
chunks = [audio_trimmed]
print(f"🎯 Analyzing {len(chunks)} audio chunk(s)...")
all_predictions = []
for i, chunk in enumerate(chunks[:3]): # Limit to 3 chunks for efficiency
inputs = self.feature_extractor(
chunk,
sampling_rate=16000,
return_tensors="pt",
padding=True,
max_length=16000 * 20,
truncation=True
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probabilities = torch.nn.functional.softmax(logits, dim=-1)
all_predictions.append(probabilities[0].cpu().numpy())
# Average predictions across chunks
avg_probabilities = sum(all_predictions) / len(all_predictions)
predicted_idx = avg_probabilities.argmax()
predicted_idx = min(predicted_idx, len(self.accent_labels) - 1)
# Calculate English confidence (exclude 'neutral' for this calculation)
english_accents = ["british", "canadian", "us", "australian", "indian"]
english_confidence = sum(
avg_probabilities[i] * 100
for i, label in enumerate(self.accent_labels)
if label in english_accents
)
results = {
'predicted_accent': self.accent_labels[predicted_idx],
'accent_confidence': avg_probabilities[predicted_idx] * 100,
'english_confidence': english_confidence,
'audio_duration': len(audio) / 16000,
'processed_duration': len(audio_trimmed) / 16000,
'chunks_analyzed': len(all_predictions),
'all_probabilities': {
self.accent_labels[i]: avg_probabilities[i] * 100
for i in range(len(self.accent_labels))
},
'is_english_likely': english_confidence > 60,
'audio_quality_score': self._assess_audio_quality(audio_trimmed)
}
print(f"✅ Classification complete ({results['chunks_analyzed']} chunks)")
return results
except Exception as e:
print(f"❌ Classification failed: {e}")
return None
def _assess_audio_quality(self, audio):
"""Assess audio quality for better result interpretation"""
try:
# Simple quality metrics
rms_energy = librosa.feature.rms(y=audio)[0].mean()
zero_crossing_rate = librosa.feature.zero_crossing_rate(audio)[0].mean()
# Normalize to 0-100 scale
quality_score = min(100, (rms_energy * 1000 + (1 - zero_crossing_rate) * 50))
return max(0, quality_score)
except:
return 50 # Default moderate quality
def analyze_video_url(self, url, max_duration=30):
"""Complete pipeline with enhanced error handling"""
print(f"🎬 Starting analysis of: {url}")
print(f"⏱️ Max duration: {max_duration} seconds")
video_path = self.download_video(url, max_duration)
if not video_path:
return {"error": "Failed to download video", "url": url}
audio_path = self.extract_audio(video_path, max_duration)
if not audio_path:
return {"error": "Failed to extract audio", "url": url}
results = self.classify_accent(audio_path)
if not results:
return {"error": "Failed to classify accent", "url": url}
results.update({
'source_url': url,
'video_file': os.path.basename(video_path),
'audio_file': os.path.basename(audio_path),
'analysis_timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
})
return results
def analyze_local_video(self, file_path, max_duration=30):
"""Enhanced local video analysis"""
print(f"🎬 Starting analysis of local file: {file_path}")
print(f"⏱️ Max duration: {max_duration} seconds")
if not os.path.isfile(file_path):
return {"error": f"File not found: {file_path}"}
# Check file size
file_size = os.path.getsize(file_path) / (1024 * 1024) # MB
print(f"📁 File size: {file_size:.1f} MB")
video_filename = os.path.basename(file_path)
print(f"✅ Using local video: {video_filename}")
audio_path = self.extract_audio(file_path, max_duration)
if not audio_path:
return {"error": "Failed to extract audio"}
results = self.classify_accent(audio_path)
if not results:
return {"error": "Failed to classify accent"}
results.update({
'source_file': file_path,
'video_file': video_filename,
'audio_file': os.path.basename(audio_path),
'file_size_mb': file_size,
'is_local': True,
'analysis_timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
})
return results
def display_results(self, results):
"""Display results in text format"""
if 'error' in results:
print(f"❌ {results['error']}")
return
accent = results['predicted_accent']
confidence = results['accent_confidence']
english_conf = results['english_confidence']
duration = results['audio_duration']
processed_duration = results.get('processed_duration', duration)
quality_score = results.get('audio_quality_score', 50)
accent_display = self.accent_display_names.get(accent, accent.title())
print(f"\n=== Accent Analysis Results ===")
print(f"Predicted Accent: {accent_display}")
print(f"Confidence: {confidence:.1f}%")
print(f"English Confidence: {english_conf:.1f}%")
print(f"Audio Duration: {duration:.1f}s")
print(f"Processed Duration: {processed_duration:.1f}s")
print(f"Audio Quality: {quality_score:.0f}/100")
print(f"Chunks Analyzed: {results.get('chunks_analyzed', 1)}")
def _plot_probabilities(self, probabilities):
"""Create a visualization of accent probabilities"""
try:
plt.figure(figsize=(10, 6))
accents = [self.accent_display_names.get(acc, acc.title()) for acc in probabilities.keys()]
probs = list(probabilities.values())
# Create color map
colors = ['#4CAF50' if p == max(probs) else '#2196F3' if p >= 20 else '#FFC107' if p >= 10 else '#9E9E9E'
for p in probs]
bars = plt.bar(accents, probs, color=colors, alpha=0.8, edgecolor='black', linewidth=0.5)
plt.title('Accent Classification Probabilities', fontsize=16, fontweight='bold', pad=20)
plt.xlabel('Accent Type', fontsize=12)
plt.ylabel('Probability (%)', fontsize=12)
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y', alpha=0.3)
# Add value labels on bars
for bar, prob in zip(bars, probs):
height = bar.get_height()
plt.text(bar.get_x() + bar.get_width() / 2., height + 0.5,
f'{prob:.1f}%', ha='center', va='bottom', fontweight='bold')
plt.tight_layout()
plt.show()
except Exception as e:
print(f"⚠️ Could not create visualization: {e}")
def batch_analyze(self, urls, max_duration=30):
"""Analyze multiple videos with progress tracking"""
results = []
failed_count = 0
print(f"🚀 Starting batch analysis of {len(urls)} videos")
for i, url in enumerate(urls, 1):
print(f"\n{'=' * 60}")
print(f"Processing video {i}/{len(urls)}")
result = self.analyze_video_url(url, max_duration)
result['video_index'] = i
if 'error' in result:
failed_count += 1
print(f"❌ Failed: {result['error']}")
else:
print(f"✅ Success: {result['predicted_accent']} ({result['accent_confidence']:.1f}%)")
results.append(result)
self.display_results(result)
# Small delay to prevent overwhelming servers
if i < len(urls):
time.sleep(1)
# Summary
success_count = len(urls) - failed_count
print(f"\n📈 Batch Analysis Summary:")
print(f" ✅ Successful: {success_count}/{len(urls)}")
print(f" ❌ Failed: {failed_count}/{len(urls)}")
return results
def export_results(self, results, filename="accent_analysis_results.json"):
"""Export results to JSON file"""
try:
with open(filename, 'w') as f:
json.dump(results, f, indent=2, default=str)
print(f"💾 Results exported to {filename}")
except Exception as e:
print(f"❌ Export failed: {e}")
def cleanup(self):
"""Clean up temporary files"""
try:
import shutil
if os.path.exists(self.temp_dir):
shutil.rmtree(self.temp_dir, ignore_errors=True)
print("🧹 Cleaned up temporary files")
except Exception as e:
print(f"⚠️ Cleanup warning: {e}")
# Helper Functions
def show_examples():
"""Show usage examples"""
examples = {
"Loom": "https://www.loom.com/share/abc123def456",
"Direct MP4": "https://example.com/video.mp4",
"Local File": "/local/input/dataset/video.mp4"
}
print("\n🎯 Supported Video Formats:")
for platform, example in examples.items():
print(f" {platform:12}: {example}")
print("\n💡 Usage Tips:")
print(" • Keep videos under 2 minutes for best results")
print(" • Ensure clear audio quality")
print(" • Multiple speakers may affect accuracy")
print(" • Model works best with sustained speech")
def quick_test_url():
"""Interactive test for video URLs"""
print("🔍 Quick Test Mode for Video URLs")
print("🎯 Supported: Loom, Direct MP4 links")
print("💡 Examples:")
print(" Loom: https://www.loom.com/share/VIDEO_ID")
print(" Direct: https://example.com/video.mp4")
url = input("\n📎 Enter your video URL (Loom, MP4 , etc.): ").strip()
if not url:
print("❌ No URL provided.")
return None
max_duration = input("⏱️ Max duration in seconds (default 20): ").strip()
try:
max_duration = int(max_duration) if max_duration else 20
except ValueError:
max_duration = 20
print(f"⚠️ Invalid duration, using {max_duration} seconds")
analyzer = VideoAccentAnalyzer()
try:
print(f"\n🚀 Starting analysis...")
results = analyzer.analyze_video_url(url, max_duration=max_duration)
analyzer.display_results(results)
return results
finally:
analyzer.cleanup()
def demo_analysis():
"""Demo function with example usage"""
print("🎬 Video Accent Analyzer Demo")
print("=" * 50)
# Initialize analyzer
analyzer = VideoAccentAnalyzer()
# Example analysis (replace with actual video URL)
example_url = "https://example.com/video.mp4" # Replace with real URL
print(f"\n🎯 Example: Analyzing {example_url}")
# Uncomment to run actual analysis
# results = analyzer.analyze_video_url(example_url, max_duration=30)
# analyzer.display_results(results)
# analyzer.cleanup()
print("\n📚 To use the analyzer:")
print("1. analyzer = VideoAccentAnalyzer()")
print("2. results = analyzer.analyze_video_url('your-url', max_duration=30)")
print("3. analyzer.display_results(results)")
print("4. analyzer.cleanup() # Clean up temporary files")
# Show examples on import
show_examples()
|