Fix import issue
Browse files- README.md +32 -0
- VideoAccentAnalyzer.py +0 -0
- app.py +1 -1
- requirements.txt +7 -0
- setup.sh +3 -0
- video_accent_analyzer.py +628 -0
README.md
CHANGED
@@ -12,3 +12,35 @@ short_description: 'a tools to automate real hiring decisions. '
|
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
15 |
+
# 🎧 Video Accent Analyzer
|
16 |
+
|
17 |
+
Analyze accents in videos from YouTube, Loom, or uploaded files. Supports multiple English accents.
|
18 |
+
|
19 |
+
## Features
|
20 |
+
- YouTube video analysis
|
21 |
+
- Loom video analysis
|
22 |
+
- Direct MP4 link support
|
23 |
+
- Local file upload
|
24 |
+
- Multiple English accent detection
|
25 |
+
|
26 |
+
## Requirements
|
27 |
+
- Python 3.8+
|
28 |
+
- FFmpeg
|
29 |
+
- PyTorch
|
30 |
+
- Transformers
|
31 |
+
|
32 |
+
## Usage
|
33 |
+
1. Enter a video URL or upload a file
|
34 |
+
2. Get instant accent analysis results
|
35 |
+
|
36 |
+
"""
|
37 |
+
Enhanced Video Accent Analyzer
|
38 |
+
Supports YouTube, Loom, direct MP4 links, and local video files with improved error handling and features.
|
39 |
+
|
40 |
+
Usage:
|
41 |
+
analyzer = VideoAccentAnalyzer()
|
42 |
+
results = analyzer.analyze_video_url("https://example.com/video.mp4", max_duration=30)
|
43 |
+
or
|
44 |
+
results = analyzer.analyze_local_video("/local/input/video.mp4", max_duration=30)
|
45 |
+
analyzer.display_results(results)
|
46 |
+
"""
|
VideoAccentAnalyzer.py
DELETED
File without changes
|
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
import ffmpeg
|
4 |
import os
|
5 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from video_accent_analyzer import VideoAccentAnalyzer
|
3 |
import ffmpeg
|
4 |
import os
|
5 |
|
requirements.txt
CHANGED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
yt-dlp
|
2 |
+
librosa
|
3 |
+
soundfile
|
4 |
+
transformers
|
5 |
+
torch
|
6 |
+
gradio
|
7 |
+
ffmpeg-python
|
setup.sh
CHANGED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
apt-get update && apt-get install -y ffmpeg
|
3 |
+
pip install -r requirements.txt
|
video_accent_analyzer.py
ADDED
@@ -0,0 +1,628 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import tempfile
|
5 |
+
import subprocess
|
6 |
+
import requests
|
7 |
+
import json
|
8 |
+
import warnings
|
9 |
+
import time
|
10 |
+
from pathlib import Path
|
11 |
+
from urllib.parse import urlparse
|
12 |
+
from IPython.display import display, HTML, Audio
|
13 |
+
import pandas as pd
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import seaborn as sns
|
16 |
+
|
17 |
+
# Suppress warnings for cleaner output
|
18 |
+
warnings.filterwarnings('ignore')
|
19 |
+
|
20 |
+
|
21 |
+
def install_if_missing(packages):
|
22 |
+
"""Install packages if they're not already available in Kaggle"""
|
23 |
+
for package in packages:
|
24 |
+
try:
|
25 |
+
package_name = package.split('==')[0].replace('-', '_')
|
26 |
+
if package_name == 'yt_dlp':
|
27 |
+
package_name = 'yt_dlp'
|
28 |
+
__import__(package_name)
|
29 |
+
except ImportError:
|
30 |
+
print(f"Installing {package}...")
|
31 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", package, "--quiet"])
|
32 |
+
|
33 |
+
|
34 |
+
# Required packages for Kaggle
|
35 |
+
required_packages = [
|
36 |
+
"yt-dlp",
|
37 |
+
"librosa",
|
38 |
+
"soundfile",
|
39 |
+
"transformers",
|
40 |
+
"torch",
|
41 |
+
"matplotlib",
|
42 |
+
"seaborn"
|
43 |
+
]
|
44 |
+
|
45 |
+
print("🔧 Setting up environment...")
|
46 |
+
install_if_missing(required_packages)
|
47 |
+
|
48 |
+
# Now import the packages
|
49 |
+
import torch
|
50 |
+
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
|
51 |
+
import librosa
|
52 |
+
import soundfile as sf
|
53 |
+
import yt_dlp
|
54 |
+
|
55 |
+
|
56 |
+
class VideoAccentAnalyzer:
|
57 |
+
def __init__(self, model_name="dima806/multiple_accent_classification"):
|
58 |
+
"""Initialize the accent analyzer for Kaggle environment"""
|
59 |
+
self.model_name = model_name
|
60 |
+
# Enhanced accent labels with better mapping
|
61 |
+
self.accent_labels = [
|
62 |
+
"british", "canadian", "us", "indian", "australian", "neutral"
|
63 |
+
]
|
64 |
+
self.accent_display_names = {
|
65 |
+
'british': '🇬🇧 British English',
|
66 |
+
'us': '🇺🇸 American English',
|
67 |
+
'australian': '🇦🇺 Australian English',
|
68 |
+
'canadian': '🇨🇦 Canadian English',
|
69 |
+
'indian': '🇮🇳 Indian English',
|
70 |
+
'neutral': '🌐 Neutral English'
|
71 |
+
}
|
72 |
+
self.temp_dir = "/tmp/accent_analyzer"
|
73 |
+
os.makedirs(self.temp_dir, exist_ok=True)
|
74 |
+
self.model_loaded = False
|
75 |
+
self._load_model()
|
76 |
+
|
77 |
+
def _load_model(self):
|
78 |
+
"""Load the accent classification model with error handling"""
|
79 |
+
print("🤖 Loading accent classification model...")
|
80 |
+
try:
|
81 |
+
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(self.model_name)
|
82 |
+
self.model = Wav2Vec2ForSequenceClassification.from_pretrained(self.model_name)
|
83 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
84 |
+
self.model.to(self.device)
|
85 |
+
self.model.eval() # Set to evaluation mode
|
86 |
+
self.model_loaded = True
|
87 |
+
print(f"✅ Model loaded successfully on {self.device}")
|
88 |
+
except Exception as e:
|
89 |
+
print(f"❌ Error loading model: {e}")
|
90 |
+
print("💡 Tip: Check your internet connection and Kaggle environment setup")
|
91 |
+
raise
|
92 |
+
|
93 |
+
def _validate_url(self, url):
|
94 |
+
"""Validate and normalize URL"""
|
95 |
+
if not url or not isinstance(url, str):
|
96 |
+
return False, "Invalid URL format"
|
97 |
+
|
98 |
+
url = url.strip()
|
99 |
+
if not url.startswith(('http://', 'https://')):
|
100 |
+
return False, "URL must start with http:// or https://"
|
101 |
+
|
102 |
+
return True, url
|
103 |
+
|
104 |
+
def download_video(self, url, max_duration=None):
|
105 |
+
"""Download video using yt-dlp with improved error handling"""
|
106 |
+
is_valid, result = self._validate_url(url)
|
107 |
+
if not is_valid:
|
108 |
+
print(f"❌ {result}")
|
109 |
+
return None
|
110 |
+
|
111 |
+
url = result
|
112 |
+
output_path = os.path.join(self.temp_dir, "video.%(ext)s")
|
113 |
+
|
114 |
+
ydl_opts = {
|
115 |
+
'outtmpl': output_path,
|
116 |
+
'format': 'best[height<=720]/best', # Limit quality for faster download
|
117 |
+
'quiet': True,
|
118 |
+
'no_warnings': True,
|
119 |
+
'socket_timeout': 30,
|
120 |
+
'retries': 3,
|
121 |
+
}
|
122 |
+
|
123 |
+
if max_duration:
|
124 |
+
ydl_opts['match_filter'] = lambda info: None if info.get('duration',
|
125 |
+
0) <= max_duration * 2 else "Video too long"
|
126 |
+
|
127 |
+
try:
|
128 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
129 |
+
print(f"📥 Downloading video from: {url}")
|
130 |
+
start_time = time.time()
|
131 |
+
ydl.download([url])
|
132 |
+
download_time = time.time() - start_time
|
133 |
+
|
134 |
+
# Find downloaded file
|
135 |
+
for file in os.listdir(self.temp_dir):
|
136 |
+
if file.startswith("video."):
|
137 |
+
video_path = os.path.join(self.temp_dir, file)
|
138 |
+
if self._is_valid_video(video_path):
|
139 |
+
print(f"✅ Downloaded valid video: {file} ({download_time:.1f}s)")
|
140 |
+
return video_path
|
141 |
+
else:
|
142 |
+
print("❌ Downloaded file is not a valid video")
|
143 |
+
return None
|
144 |
+
|
145 |
+
except Exception as e:
|
146 |
+
print(f"⚠️ yt-dlp failed: {e}")
|
147 |
+
return self._try_direct_download(url)
|
148 |
+
|
149 |
+
def _is_valid_video(self, file_path):
|
150 |
+
"""Verify video file has valid structure"""
|
151 |
+
try:
|
152 |
+
result = subprocess.run(
|
153 |
+
['ffprobe', '-v', 'error', '-show_format', '-show_streams', file_path],
|
154 |
+
capture_output=True, text=True, timeout=10
|
155 |
+
)
|
156 |
+
return result.returncode == 0
|
157 |
+
except subprocess.TimeoutExpired:
|
158 |
+
print("⚠️ Video validation timed out")
|
159 |
+
return False
|
160 |
+
except Exception as e:
|
161 |
+
print(f"⚠️ Video validation error: {e}")
|
162 |
+
return False
|
163 |
+
|
164 |
+
def _try_direct_download(self, url):
|
165 |
+
"""Enhanced fallback for direct video URLs"""
|
166 |
+
try:
|
167 |
+
print("🔄 Trying direct download...")
|
168 |
+
headers = {
|
169 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
170 |
+
}
|
171 |
+
|
172 |
+
response = requests.get(url, stream=True, timeout=60, headers=headers)
|
173 |
+
response.raise_for_status()
|
174 |
+
|
175 |
+
content_type = response.headers.get("Content-Type", "")
|
176 |
+
if "text/html" in content_type:
|
177 |
+
print("⚠️ Received HTML instead of video - check URL access")
|
178 |
+
return None
|
179 |
+
|
180 |
+
video_path = os.path.join(self.temp_dir, "video.mp4")
|
181 |
+
file_size = 0
|
182 |
+
|
183 |
+
with open(video_path, 'wb') as f:
|
184 |
+
for chunk in response.iter_content(chunk_size=8192):
|
185 |
+
if chunk:
|
186 |
+
f.write(chunk)
|
187 |
+
file_size += len(chunk)
|
188 |
+
|
189 |
+
print(f"📁 Downloaded {file_size / (1024 * 1024):.1f} MB")
|
190 |
+
|
191 |
+
if self._is_valid_video(video_path):
|
192 |
+
print("✅ Direct download successful")
|
193 |
+
return video_path
|
194 |
+
else:
|
195 |
+
print("❌ Downloaded file is not a valid video")
|
196 |
+
return None
|
197 |
+
|
198 |
+
except Exception as e:
|
199 |
+
print(f"❌ Direct download failed: {e}")
|
200 |
+
return None
|
201 |
+
|
202 |
+
def extract_audio(self, video_path, max_duration=None):
|
203 |
+
"""Extract audio with improved error handling and progress"""
|
204 |
+
audio_path = os.path.join(self.temp_dir, "audio.wav")
|
205 |
+
|
206 |
+
cmd = ['ffmpeg', '-i', video_path, '-vn', '-acodec', 'pcm_s16le',
|
207 |
+
'-ar', '16000', '-ac', '1', '-y', '-loglevel', 'error']
|
208 |
+
|
209 |
+
if max_duration:
|
210 |
+
cmd.extend(['-t', str(max_duration)])
|
211 |
+
cmd.append(audio_path)
|
212 |
+
|
213 |
+
try:
|
214 |
+
print(f"🎵 Extracting audio (max {max_duration}s)...")
|
215 |
+
start_time = time.time()
|
216 |
+
result = subprocess.run(cmd, capture_output=True, text=True, timeout=120)
|
217 |
+
extraction_time = time.time() - start_time
|
218 |
+
|
219 |
+
if result.returncode == 0 and os.path.exists(audio_path):
|
220 |
+
file_size = os.path.getsize(audio_path) / (1024 * 1024)
|
221 |
+
print(f"✅ Audio extracted successfully ({extraction_time:.1f}s, {file_size:.1f}MB)")
|
222 |
+
return audio_path
|
223 |
+
else:
|
224 |
+
raise Exception(f"FFmpeg error: {result.stderr}")
|
225 |
+
|
226 |
+
except subprocess.TimeoutExpired:
|
227 |
+
print("❌ Audio extraction timed out")
|
228 |
+
return None
|
229 |
+
except Exception as e:
|
230 |
+
print(f"❌ Audio extraction failed: {e}")
|
231 |
+
return None
|
232 |
+
|
233 |
+
def classify_accent(self, audio_path):
|
234 |
+
"""Enhanced accent classification with better preprocessing"""
|
235 |
+
if not self.model_loaded:
|
236 |
+
print("❌ Model not loaded properly")
|
237 |
+
return None
|
238 |
+
|
239 |
+
try:
|
240 |
+
print("🔍 Loading and preprocessing audio...")
|
241 |
+
audio, sr = librosa.load(audio_path, sr=16000)
|
242 |
+
|
243 |
+
# Enhanced preprocessing
|
244 |
+
if len(audio) == 0:
|
245 |
+
print("❌ Empty audio file")
|
246 |
+
return None
|
247 |
+
|
248 |
+
# Remove silence from beginning and end
|
249 |
+
audio_trimmed, _ = librosa.effects.trim(audio, top_db=20)
|
250 |
+
|
251 |
+
# Use multiple chunks for better accuracy if audio is long
|
252 |
+
chunk_size = 16000 * 20 # 20 seconds chunks
|
253 |
+
chunks = []
|
254 |
+
|
255 |
+
if len(audio_trimmed) > chunk_size:
|
256 |
+
# Split into overlapping chunks
|
257 |
+
step_size = chunk_size // 2
|
258 |
+
for i in range(0, len(audio_trimmed) - chunk_size + 1, step_size):
|
259 |
+
chunks.append(audio_trimmed[i:i + chunk_size])
|
260 |
+
if len(audio_trimmed) % step_size != 0:
|
261 |
+
chunks.append(audio_trimmed[-chunk_size:])
|
262 |
+
else:
|
263 |
+
chunks = [audio_trimmed]
|
264 |
+
|
265 |
+
print(f"🎯 Analyzing {len(chunks)} audio chunk(s)...")
|
266 |
+
|
267 |
+
all_predictions = []
|
268 |
+
|
269 |
+
for i, chunk in enumerate(chunks[:3]): # Limit to 3 chunks for efficiency
|
270 |
+
inputs = self.feature_extractor(
|
271 |
+
chunk,
|
272 |
+
sampling_rate=16000,
|
273 |
+
return_tensors="pt",
|
274 |
+
padding=True,
|
275 |
+
max_length=16000 * 20,
|
276 |
+
truncation=True
|
277 |
+
)
|
278 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
279 |
+
|
280 |
+
with torch.no_grad():
|
281 |
+
outputs = self.model(**inputs)
|
282 |
+
logits = outputs.logits
|
283 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
284 |
+
all_predictions.append(probabilities[0].cpu().numpy())
|
285 |
+
|
286 |
+
# Average predictions across chunks
|
287 |
+
avg_probabilities = sum(all_predictions) / len(all_predictions)
|
288 |
+
predicted_idx = avg_probabilities.argmax()
|
289 |
+
predicted_idx = min(predicted_idx, len(self.accent_labels) - 1)
|
290 |
+
|
291 |
+
# Calculate English confidence (exclude 'neutral' for this calculation)
|
292 |
+
english_accents = ["british", "canadian", "us", "australian", "indian"]
|
293 |
+
english_confidence = sum(
|
294 |
+
avg_probabilities[i] * 100
|
295 |
+
for i, label in enumerate(self.accent_labels)
|
296 |
+
if label in english_accents
|
297 |
+
)
|
298 |
+
|
299 |
+
results = {
|
300 |
+
'predicted_accent': self.accent_labels[predicted_idx],
|
301 |
+
'accent_confidence': avg_probabilities[predicted_idx] * 100,
|
302 |
+
'english_confidence': english_confidence,
|
303 |
+
'audio_duration': len(audio) / 16000,
|
304 |
+
'processed_duration': len(audio_trimmed) / 16000,
|
305 |
+
'chunks_analyzed': len(all_predictions),
|
306 |
+
'all_probabilities': {
|
307 |
+
self.accent_labels[i]: avg_probabilities[i] * 100
|
308 |
+
for i in range(len(self.accent_labels))
|
309 |
+
},
|
310 |
+
'is_english_likely': english_confidence > 60,
|
311 |
+
'audio_quality_score': self._assess_audio_quality(audio_trimmed)
|
312 |
+
}
|
313 |
+
|
314 |
+
print(f"✅ Classification complete ({results['chunks_analyzed']} chunks)")
|
315 |
+
return results
|
316 |
+
|
317 |
+
except Exception as e:
|
318 |
+
print(f"❌ Classification failed: {e}")
|
319 |
+
return None
|
320 |
+
|
321 |
+
def _assess_audio_quality(self, audio):
|
322 |
+
"""Assess audio quality for better result interpretation"""
|
323 |
+
try:
|
324 |
+
# Simple quality metrics
|
325 |
+
rms_energy = librosa.feature.rms(y=audio)[0].mean()
|
326 |
+
zero_crossing_rate = librosa.feature.zero_crossing_rate(audio)[0].mean()
|
327 |
+
|
328 |
+
# Normalize to 0-100 scale
|
329 |
+
quality_score = min(100, (rms_energy * 1000 + (1 - zero_crossing_rate) * 50))
|
330 |
+
return max(0, quality_score)
|
331 |
+
except:
|
332 |
+
return 50 # Default moderate quality
|
333 |
+
|
334 |
+
def analyze_video_url(self, url, max_duration=30):
|
335 |
+
"""Complete pipeline with enhanced error handling"""
|
336 |
+
print(f"🎬 Starting analysis of: {url}")
|
337 |
+
print(f"⏱️ Max duration: {max_duration} seconds")
|
338 |
+
|
339 |
+
video_path = self.download_video(url, max_duration)
|
340 |
+
if not video_path:
|
341 |
+
return {"error": "Failed to download video", "url": url}
|
342 |
+
|
343 |
+
audio_path = self.extract_audio(video_path, max_duration)
|
344 |
+
if not audio_path:
|
345 |
+
return {"error": "Failed to extract audio", "url": url}
|
346 |
+
|
347 |
+
results = self.classify_accent(audio_path)
|
348 |
+
if not results:
|
349 |
+
return {"error": "Failed to classify accent", "url": url}
|
350 |
+
|
351 |
+
results.update({
|
352 |
+
'source_url': url,
|
353 |
+
'video_file': os.path.basename(video_path),
|
354 |
+
'audio_file': os.path.basename(audio_path),
|
355 |
+
'analysis_timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
|
356 |
+
})
|
357 |
+
|
358 |
+
return results
|
359 |
+
|
360 |
+
def analyze_local_video(self, file_path, max_duration=30):
|
361 |
+
"""Enhanced local video analysis"""
|
362 |
+
print(f"🎬 Starting analysis of local file: {file_path}")
|
363 |
+
print(f"⏱️ Max duration: {max_duration} seconds")
|
364 |
+
|
365 |
+
if not os.path.isfile(file_path):
|
366 |
+
return {"error": f"File not found: {file_path}"}
|
367 |
+
|
368 |
+
# Check file size
|
369 |
+
file_size = os.path.getsize(file_path) / (1024 * 1024) # MB
|
370 |
+
print(f"📁 File size: {file_size:.1f} MB")
|
371 |
+
|
372 |
+
video_filename = os.path.basename(file_path)
|
373 |
+
print(f"✅ Using local video: {video_filename}")
|
374 |
+
|
375 |
+
audio_path = self.extract_audio(file_path, max_duration)
|
376 |
+
if not audio_path:
|
377 |
+
return {"error": "Failed to extract audio"}
|
378 |
+
|
379 |
+
results = self.classify_accent(audio_path)
|
380 |
+
if not results:
|
381 |
+
return {"error": "Failed to classify accent"}
|
382 |
+
|
383 |
+
results.update({
|
384 |
+
'source_file': file_path,
|
385 |
+
'video_file': video_filename,
|
386 |
+
'audio_file': os.path.basename(audio_path),
|
387 |
+
'file_size_mb': file_size,
|
388 |
+
'is_local': True,
|
389 |
+
'analysis_timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
|
390 |
+
})
|
391 |
+
|
392 |
+
return results
|
393 |
+
|
394 |
+
def display_results(self, results):
|
395 |
+
"""Enhanced results display with visualizations"""
|
396 |
+
if 'error' in results:
|
397 |
+
display(HTML(
|
398 |
+
f"<div style='color: red; font-size: 16px; padding: 10px; border: 1px solid red; border-radius: 5px;'>❌ {results['error']}</div>"))
|
399 |
+
return
|
400 |
+
|
401 |
+
accent = results['predicted_accent']
|
402 |
+
confidence = results['accent_confidence']
|
403 |
+
english_conf = results['english_confidence']
|
404 |
+
duration = results['audio_duration']
|
405 |
+
processed_duration = results.get('processed_duration', duration)
|
406 |
+
quality_score = results.get('audio_quality_score', 50)
|
407 |
+
|
408 |
+
accent_display = self.accent_display_names.get(accent, accent.title())
|
409 |
+
|
410 |
+
# Enhanced HTML display
|
411 |
+
html = f"""
|
412 |
+
<div style='border: 2px solid #4CAF50; border-radius: 10px; padding: 20px; margin: 10px 0; background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);'>
|
413 |
+
<h2 style='color: #2E7D32; margin-top: 0; text-align: center;'>🎯 Accent Analysis Results</h2>
|
414 |
+
|
415 |
+
<div style='display: flex; flex-wrap: wrap; gap: 20px; margin-bottom: 20px;'>
|
416 |
+
<div style='flex: 1; min-width: 200px; background: white; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);'>
|
417 |
+
<h3 style='color: #1976D2; margin-top: 0;'>🎭 Primary Classification</h3>
|
418 |
+
<p style='font-size: 20px; margin: 5px 0; font-weight: bold;'>{accent_display}</p>
|
419 |
+
<p style='margin: 5px 0;'>Confidence: <strong style='color: {"#4CAF50" if confidence >= 70 else "#FF9800" if confidence >= 50 else "#F44336"};'>{confidence:.1f}%</strong></p>
|
420 |
+
</div>
|
421 |
+
|
422 |
+
<div style='flex: 1; min-width: 200px; background: white; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);'>
|
423 |
+
<h3 style='color: #1976D2; margin-top: 0;'>🌍 English Proficiency</h3>
|
424 |
+
<p style='font-size: 18px; margin: 5px 0;'><strong style='color: {"#4CAF50" if english_conf >= 70 else "#FF9800" if english_conf >= 50 else "#F44336"};'>{english_conf:.1f}%</strong></p>
|
425 |
+
<p style='margin: 5px 0;'>Audio Quality: <strong>{quality_score:.0f}/100</strong></p>
|
426 |
+
</div>
|
427 |
+
|
428 |
+
<div style='flex: 1; min-width: 200px; background: white; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);'>
|
429 |
+
<h3 style='color: #1976D2; margin-top: 0;'>⏱️ Processing Info</h3>
|
430 |
+
<p style='margin: 5px 0;'>Duration: <strong>{duration:.1f}s</strong></p>
|
431 |
+
<p style='margin: 5px 0;'>Processed: <strong>{processed_duration:.1f}s</strong></p>
|
432 |
+
<p style='margin: 5px 0;'>Chunks: <strong>{results.get("chunks_analyzed", 1)}</strong></p>
|
433 |
+
</div>
|
434 |
+
</div>
|
435 |
+
|
436 |
+
<div style='background: white; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);'>
|
437 |
+
<h3 style='color: #1976D2; margin-top: 0;'>📊 Assessment</h3>
|
438 |
+
<div style='display: flex; flex-wrap: wrap; gap: 10px;'>
|
439 |
+
<span style='background: {"#4CAF50" if english_conf >= 70 else "#FF9800" if english_conf >= 50 else "#F44336"}; color: white; padding: 5px 10px; border-radius: 15px; font-size: 14px;'>
|
440 |
+
{'✅ Strong English Speaker' if english_conf >= 70 else '⚠️ Moderate English Confidence' if english_conf >= 50 else '❓ Low English Confidence'}
|
441 |
+
</span>
|
442 |
+
<span style='background: {"#4CAF50" if confidence >= 70 else "#FF9800" if confidence >= 50 else "#F44336"}; color: white; padding: 5px 10px; border-radius: 15px; font-size: 14px;'>
|
443 |
+
{'🎯 High Confidence' if confidence >= 70 else '🤔 Moderate Confidence' if confidence >= 50 else '❓ Low Confidence'}
|
444 |
+
</span>
|
445 |
+
<span style='background: {"#4CAF50" if quality_score >= 70 else "#FF9800" if quality_score >= 40 else "#F44336"}; color: white; padding: 5px 10px; border-radius: 15px; font-size: 14px;'>
|
446 |
+
{'🎤 Good Audio Quality' if quality_score >= 70 else '📢 Fair Audio Quality' if quality_score >= 40 else '🔇 Poor Audio Quality'}
|
447 |
+
</span>
|
448 |
+
</div>
|
449 |
+
</div>
|
450 |
+
</div>
|
451 |
+
"""
|
452 |
+
display(HTML(html))
|
453 |
+
|
454 |
+
# Create probability breakdown visualization
|
455 |
+
self._plot_probabilities(results['all_probabilities'])
|
456 |
+
|
457 |
+
# Display detailed breakdown table
|
458 |
+
prob_df = pd.DataFrame([
|
459 |
+
{
|
460 |
+
'Accent': self.accent_display_names.get(accent, accent.title()),
|
461 |
+
'Probability': f"{prob:.1f}%",
|
462 |
+
'Confidence': '🟢 High' if prob >= 70 else '🟡 Medium' if prob >= 30 else '🔴 Low'
|
463 |
+
}
|
464 |
+
for accent, prob in sorted(results['all_probabilities'].items(), key=lambda x: x[1], reverse=True)
|
465 |
+
])
|
466 |
+
|
467 |
+
print("\n📊 Detailed Probability Breakdown:")
|
468 |
+
display(prob_df)
|
469 |
+
|
470 |
+
def _plot_probabilities(self, probabilities):
|
471 |
+
"""Create a visualization of accent probabilities"""
|
472 |
+
try:
|
473 |
+
plt.figure(figsize=(10, 6))
|
474 |
+
|
475 |
+
accents = [self.accent_display_names.get(acc, acc.title()) for acc in probabilities.keys()]
|
476 |
+
probs = list(probabilities.values())
|
477 |
+
|
478 |
+
# Create color map
|
479 |
+
colors = ['#4CAF50' if p == max(probs) else '#2196F3' if p >= 20 else '#FFC107' if p >= 10 else '#9E9E9E'
|
480 |
+
for p in probs]
|
481 |
+
|
482 |
+
bars = plt.bar(accents, probs, color=colors, alpha=0.8, edgecolor='black', linewidth=0.5)
|
483 |
+
|
484 |
+
plt.title('Accent Classification Probabilities', fontsize=16, fontweight='bold', pad=20)
|
485 |
+
plt.xlabel('Accent Type', fontsize=12)
|
486 |
+
plt.ylabel('Probability (%)', fontsize=12)
|
487 |
+
plt.xticks(rotation=45, ha='right')
|
488 |
+
plt.grid(axis='y', alpha=0.3)
|
489 |
+
|
490 |
+
# Add value labels on bars
|
491 |
+
for bar, prob in zip(bars, probs):
|
492 |
+
height = bar.get_height()
|
493 |
+
plt.text(bar.get_x() + bar.get_width() / 2., height + 0.5,
|
494 |
+
f'{prob:.1f}%', ha='center', va='bottom', fontweight='bold')
|
495 |
+
|
496 |
+
plt.tight_layout()
|
497 |
+
plt.show()
|
498 |
+
|
499 |
+
except Exception as e:
|
500 |
+
print(f"⚠️ Could not create visualization: {e}")
|
501 |
+
|
502 |
+
def batch_analyze(self, urls, max_duration=30):
|
503 |
+
"""Analyze multiple videos with progress tracking"""
|
504 |
+
results = []
|
505 |
+
failed_count = 0
|
506 |
+
|
507 |
+
print(f"🚀 Starting batch analysis of {len(urls)} videos")
|
508 |
+
|
509 |
+
for i, url in enumerate(urls, 1):
|
510 |
+
print(f"\n{'=' * 60}")
|
511 |
+
print(f"Processing video {i}/{len(urls)}")
|
512 |
+
|
513 |
+
result = self.analyze_video_url(url, max_duration)
|
514 |
+
result['video_index'] = i
|
515 |
+
|
516 |
+
if 'error' in result:
|
517 |
+
failed_count += 1
|
518 |
+
print(f"❌ Failed: {result['error']}")
|
519 |
+
else:
|
520 |
+
print(f"✅ Success: {result['predicted_accent']} ({result['accent_confidence']:.1f}%)")
|
521 |
+
|
522 |
+
results.append(result)
|
523 |
+
self.display_results(result)
|
524 |
+
|
525 |
+
# Small delay to prevent overwhelming servers
|
526 |
+
if i < len(urls):
|
527 |
+
time.sleep(1)
|
528 |
+
|
529 |
+
# Summary
|
530 |
+
success_count = len(urls) - failed_count
|
531 |
+
print(f"\n📈 Batch Analysis Summary:")
|
532 |
+
print(f" ✅ Successful: {success_count}/{len(urls)}")
|
533 |
+
print(f" ❌ Failed: {failed_count}/{len(urls)}")
|
534 |
+
|
535 |
+
return results
|
536 |
+
|
537 |
+
def export_results(self, results, filename="accent_analysis_results.json"):
|
538 |
+
"""Export results to JSON file"""
|
539 |
+
try:
|
540 |
+
with open(filename, 'w') as f:
|
541 |
+
json.dump(results, f, indent=2, default=str)
|
542 |
+
print(f"💾 Results exported to {filename}")
|
543 |
+
except Exception as e:
|
544 |
+
print(f"❌ Export failed: {e}")
|
545 |
+
|
546 |
+
def cleanup(self):
|
547 |
+
"""Clean up temporary files"""
|
548 |
+
try:
|
549 |
+
import shutil
|
550 |
+
if os.path.exists(self.temp_dir):
|
551 |
+
shutil.rmtree(self.temp_dir, ignore_errors=True)
|
552 |
+
print("🧹 Cleaned up temporary files")
|
553 |
+
except Exception as e:
|
554 |
+
print(f"⚠️ Cleanup warning: {e}")
|
555 |
+
|
556 |
+
|
557 |
+
# Helper Functions
|
558 |
+
def show_examples():
|
559 |
+
"""Show usage examples"""
|
560 |
+
examples = {
|
561 |
+
"YouTube": "https://youtube.com/watch?v=abc123",
|
562 |
+
"Loom": "https://www.loom.com/share/abc123def456",
|
563 |
+
"Direct MP4": "https://example.com/video.mp4",
|
564 |
+
"Local File": "/kaggle/input/dataset/video.mp4"
|
565 |
+
}
|
566 |
+
|
567 |
+
print("\n🎯 Supported Video Formats:")
|
568 |
+
for platform, example in examples.items():
|
569 |
+
print(f" {platform:12}: {example}")
|
570 |
+
|
571 |
+
print("\n💡 Usage Tips:")
|
572 |
+
print(" • Keep videos under 2 minutes for best results")
|
573 |
+
print(" • Ensure clear audio quality")
|
574 |
+
print(" • Multiple speakers may affect accuracy")
|
575 |
+
print(" • Model works best with sustained speech")
|
576 |
+
|
577 |
+
|
578 |
+
def quick_test_local():
|
579 |
+
"""Interactive test for local files"""
|
580 |
+
print("🔍 Quick Test Mode for Local Files")
|
581 |
+
print("📁 Common Kaggle input paths:")
|
582 |
+
print(" /kaggle/input/your-dataset/video.mp4")
|
583 |
+
print(" /kaggle/input/video-files/sample.mp4")
|
584 |
+
|
585 |
+
file_path = input("\n📎 Enter full path to your local video: ").strip()
|
586 |
+
if not file_path:
|
587 |
+
print("❌ No path provided.")
|
588 |
+
return None
|
589 |
+
|
590 |
+
if not os.path.exists(file_path):
|
591 |
+
print(f"❌ File not found: {file_path}")
|
592 |
+
return None
|
593 |
+
|
594 |
+
analyzer = VideoAccentAnalyzer()
|
595 |
+
try:
|
596 |
+
results = analyzer.analyze_local_video(file_path)
|
597 |
+
analyzer.display_results(results)
|
598 |
+
return results
|
599 |
+
finally:
|
600 |
+
analyzer.cleanup()
|
601 |
+
|
602 |
+
|
603 |
+
def demo_analysis():
|
604 |
+
"""Demo function with example usage"""
|
605 |
+
print("🎬 Video Accent Analyzer Demo")
|
606 |
+
print("=" * 50)
|
607 |
+
|
608 |
+
# Initialize analyzer
|
609 |
+
analyzer = VideoAccentAnalyzer()
|
610 |
+
|
611 |
+
# Example analysis (replace with actual video URL)
|
612 |
+
example_url = "https://example.com/video.mp4" # Replace with real URL
|
613 |
+
print(f"\n🎯 Example: Analyzing {example_url}")
|
614 |
+
|
615 |
+
# Uncomment to run actual analysis
|
616 |
+
# results = analyzer.analyze_video_url(example_url, max_duration=30)
|
617 |
+
# analyzer.display_results(results)
|
618 |
+
# analyzer.cleanup()
|
619 |
+
|
620 |
+
print("\n📚 To use the analyzer:")
|
621 |
+
print("1. analyzer = VideoAccentAnalyzer()")
|
622 |
+
print("2. results = analyzer.analyze_video_url('your-url', max_duration=30)")
|
623 |
+
print("3. analyzer.display_results(results)")
|
624 |
+
print("4. analyzer.cleanup() # Clean up temporary files")
|
625 |
+
|
626 |
+
|
627 |
+
# Show examples on import
|
628 |
+
show_examples()
|