File size: 4,943 Bytes
1d0abcd 6cf7dc2 5cdbd8d 1d0abcd 5cdbd8d 1d0abcd 5cdbd8d 1d0abcd 5cdbd8d 1d0abcd 5cdbd8d 1d0abcd 5cdbd8d 1d0abcd 5cdbd8d 98a96df 5cdbd8d 98a96df 5cdbd8d 98a96df 5cdbd8d 1d0abcd 5cdbd8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import gradio as gr
from video_accent_analyzer import VideoAccentAnalyzer
import plotly.graph_objects as go
import pandas as pd
analyzer = VideoAccentAnalyzer()
def create_plotly_chart(probabilities):
"""Create an interactive Plotly bar chart for accent probabilities"""
accents = [analyzer.accent_display_names.get(acc, acc.title()) for acc in probabilities.keys()]
probs = list(probabilities.values())
colors = ['#4CAF50' if p == max(probs) else '#2196F3' if p >= 20
else '#FFC107' if p >= 10 else '#9E9E9E' for p in probs]
fig = go.Figure(data=[
go.Bar(
x=accents,
y=probs,
marker_color=colors,
text=[f'{p:.1f}%' for p in probs],
textposition='auto',
)
])
fig.update_layout(
title='Accent Probability Distribution',
xaxis_title='Accent Type',
yaxis_title='Probability (%)',
template='plotly_white',
yaxis_range=[0, 100],
)
return fig
def analyze_video(url=None, video_file=None, duration=30):
"""Analyze video from URL or file with enhanced output"""
try:
if not url and not video_file:
return (
"### β Error\nPlease provide either a video URL or upload a video file.",
None
)
if url:
result = analyzer.analyze_video_url(url, max_duration=duration)
else:
result = analyzer.analyze_local_video(video_file, max_duration=duration)
if 'error' in result:
return (
f"### β Error\n{result['error']}",
None
)
# Create markdown output
markdown = f"""
### π― Analysis Results
**Primary Classification:**
- π£οΈ Predicted Accent: {analyzer.accent_display_names.get(result['predicted_accent'])}
- π Confidence: {result['accent_confidence']:.1f}%
- π English Confidence: {result['english_confidence']:.1f}%
**Audio Analysis:**
- β±οΈ Duration: {result['audio_duration']:.1f} seconds
- π Quality Score: {result.get('audio_quality_score', 'N/A')}
- π΅ Chunks Analyzed: {result.get('chunks_analyzed', 1)}
**Assessment:**
- {'β
Strong English Speaker' if result['english_confidence'] >= 70 else 'β οΈ Moderate English Confidence' if result['english_confidence'] >= 50 else 'β Low English Confidence'}
- {'π― High Accent Confidence' if result['accent_confidence'] >= 70 else 'π€ Moderate Accent Confidence' if result['accent_confidence'] >= 50 else 'β Low Accent Confidence'}
"""
# Create visualization
fig = create_plotly_chart(result['all_probabilities'])
return markdown, fig
except Exception as e:
return f"### β Error\nAn unexpected error occurred: {str(e)}", None
# Create Gradio interface
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
background: linear-gradient(45deg, #4CAF50, #2196F3);
border: none;
}
.gr-button:hover {
background: linear-gradient(45deg, #2196F3, #4CAF50);
transform: scale(1.02);
}
"""
with gr.Blocks(css=css) as interface:
gr.Markdown("""
# π§ Video Accent Analyzer
Analyze English accents in videos from various sources:
- MP4 videos
- Loom recordings
- Direct video links
- Uploaded video files
### π‘ Tips
- Keep videos under 2 minutes for best results
- Ensure clear audio quality
- Multiple speakers may affect accuracy
""")
with gr.Row():
with gr.Column():
url_input = gr.Textbox(
label="Video URL",
placeholder="Enter , Loom, or direct video URL"
)
video_input = gr.File(
label="Or Upload Video",
file_types=["video"]
)
duration = gr.Slider(
minimum=10,
maximum=120,
value=30,
step=10,
label="Maximum Duration (seconds)"
)
analyze_btn = gr.Button("π Analyze Video", variant="primary")
with gr.Column():
output_text = gr.Markdown(label="Analysis Results")
output_plot = gr.Plot(label="Accent Distribution")
analyze_btn.click(
fn=analyze_video,
inputs=[url_input, video_input, duration],
outputs=[output_text, output_plot]
)
gr.Examples(
examples=[
["https://www.loom.com/share/7b82b3e25ec8409a8e4b5568e95dca5c?sid=e0819070-d2ba-4236-a7a0-878c8739040f", None, 30],
],
inputs=[url_input, video_input, duration],
outputs=[output_text, output_plot],
label="Example Videos"
)
if __name__ == "__main__":
interface.launch()
|