File size: 12,684 Bytes
9a14671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7128c2
9a14671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import os
import sys
import cv2
import subprocess
from tqdm import tqdm  # add this at the top
from PIL import Image
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_core.prompts import ChatPromptTemplate
from transformers import pipeline
from scenedetect import SceneManager, open_video, ContentDetector
from sentence_transformers import SentenceTransformer, util

# ─── 1. AUTH & MODELS ────────────────────────────────────────────────────────────

# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")

if not HF_TOKEN:
    print("❌ Error: HF_TOKEN not found in .env file")
    sys.exit(1)

# Initialize models with proper configurations
captioner = pipeline(
    "image-to-text",
    model="Salesforce/blip-image-captioning-base",
    device="cpu"
)

vl_pipeline = pipeline(
    "visual-question-answering",
    model="Salesforce/blip-vqa-base",
    device="cpu"
)

elaborator = pipeline(
    "text-generation",
    model="gpt2-medium",
    device="cpu",
    max_new_tokens=500,  # Use max_new_tokens instead of max_length
    do_sample=True,
    top_p=0.9,
    temperature=0.7
)

embedder = SentenceTransformer("BAAI/bge-small-en-v1.5")


# ─── 2. HELPERS ──────────────────────────────────────────────────────────────────

def run_ffmpeg(cmd):
    full = ["ffmpeg", "-hide_banner", "-loglevel", "error", "-y"] + cmd
    p = subprocess.Popen(full, stderr=subprocess.PIPE)
    _, err = p.communicate()
    if p.returncode != 0:
        print("❌ FFmpeg error:\n", err.decode())
        sys.exit(1)


# ─── 3. SCENE DETECTION & KEYFRAMES ──────────────────────────────────────────────

def detect_scenes(video_path, thresh=15.0):
    v = open_video(video_path)
    mgr = SceneManager()
    mgr.add_detector(ContentDetector(threshold=thresh))
    mgr.detect_scenes(v)
    return mgr.get_scene_list()



def get_removal_indices_groq(captions, query):
    llm = ChatGroq(
        model="llama-3.1-8b-instant",
        temperature=0.2,
        max_tokens=500
    )

    prompt = ChatPromptTemplate.from_messages([
        (
            "system",
            "You are a helpful assistant for video analysis. The user will give you a list of scene captions, "
            "each labeled with an index like [1], [2], ..., and a filtering instruction like 'remove food scenes'.\n\n"
            "Return ONLY the list of indexes that should be removed — e.g., [2, 5, 9]\n"
            "⚠️ Do not explain, describe, or add any commentary. Your response MUST be a valid Python list of integers."
        ),
        (
            "human",
            "Filtering instruction: {query}\n\nCaptions:\n{captions}"
        )
    ])

    chain = prompt | llm
    captions_formatted = "\n".join(f"[{i+1}] {cap.strip()}" for i, cap in enumerate(captions))

    try:
        response = chain.invoke({"query": query, "captions": captions_formatted})
        to_remove = eval(response.content.strip())

        if not isinstance(to_remove, list) or not all(isinstance(i, int) for i in to_remove):
            raise ValueError("Invalid format")

    except Exception as e:
        print(f"❌ LLM returned invalid output: {response.content}")
        to_remove = []

    return to_remove


def groq_llm(prompt):
    llm = ChatGroq(
        model="llama-3.1-8b-instant",
        temperature=0.2,
        max_tokens=500
    )
    return llm.invoke(prompt).content.strip()

    

def extract_keyframes(video_path, scenes):
    cap, frames = cv2.VideoCapture(video_path), []
    for s,e in scenes:
        mid = (s.get_frames() + e.get_frames()) // 2
        cap.set(cv2.CAP_PROP_POS_FRAMES, mid)
        ok, img = cap.read()
        if ok: frames.append((mid, img))
    cap.release()
    return frames


# ─── 4. DESCRIPTIONS & SUMMARY ───────────────────────────────────────────────────

def generate_scene_caption(frame):
    img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
    return captioner(img)[0]["generated_text"]

def generate_video_summary_groq(captions):
    """Generate a video summary using Groq LLM."""
    llm = ChatGroq(
        model="llama-3.1-8b-instant",
        temperature=0.2,
        max_tokens=500
    )

    prompt = ChatPromptTemplate.from_messages([
        (
            "system",
            "You are a helpful assistant for video analysis. The user will give you a list of scene captions from a video. "
            "Your task is to write a concise, narrative summary of what happens in the video, focusing only on the events shown. "
            "Make it engaging and easy to understand. Do not include any titles, links, or external references."
        ),
        (
            "human",
            "Here are the scene captions from the video in order:\n{captions}\n\nPlease provide a narrative summary."
        )
    ])

    chain = prompt | llm
    captions_formatted = "\n".join(f"[{i+1}] {cap.strip()}" for i, cap in enumerate(captions))

    try:
        response = chain.invoke({"captions": captions_formatted})
        summary = response.content.strip()
        
        # Format the final output
        return f"""🎬 Video Summary:
{summary}

📊 Total Scenes: {len(captions)}

🔍 Key Moments:
{chr(10).join(f"• {cap}" for cap in captions[:5])}
..."""
    except Exception as e:
        print(f"❌ Error generating summary with Groq: {e}")
        return "❌ Error: Failed to generate video summary"

def generate_video_summary(captions):
    """
    Generate a video summary using Groq LLM.
    """
    return generate_video_summary_groq(captions)




import ast

def filter_scenes_with_llm(captions, query, llm):
    """
    Uses an LLM to determine which scenes to remove based on captions and a user query.

    Args:
        captions (List[str]): List of scene/frame captions.
        query (str): User intent, e.g. "Remove scenes with Trump".
        llm (callable): Function to call your LLM, e.g. `llm(prompt)`.

    Returns:
        List[int]: List of 0-based frame indexes to remove.
    """
    formatted = "\n".join([f"{i+1}. {cap}" for i, cap in enumerate(captions)])
    prompt = f"""
You're an intelligent video assistant.

The user wants to: **{query}**

Below are numbered captions for each scene in a video:
{formatted}

👉 Return a Python list of only the scene numbers that should be removed based on the user query.
👉 ONLY return the list like this: [3, 5, 11]. No explanation.
"""

    # Run LLM
    response = llm(prompt)

    try:
        result = ast.literal_eval(response.strip())
        result = [i-1 for i in result]  # convert to 0-based index
        return result
    except:
        print("⚠️ Failed to parse LLM output:", response)
        return []

# ─── 5. FILTERING ───────────────────────────────────────────────────────────────
def group_indices(indices):
    """Group consecutive indices together as chunks."""
    if not indices:
        return []
    indices = sorted(indices)
    groups = [[indices[0]]]
    for i in indices[1:]:
        if i == groups[-1][-1] + 1:
            groups[-1].append(i)
        else:
            groups.append([i])
    return groups



def vqa_matches(keyframes, question):
    flags = []
    for _,frame in keyframes:
        img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        ans = vl_pipeline({"image": img, "question": question})
        flags.append("yes" in ans[0]["answer"].lower())
    return flags

def semantic_matches(captions, prompt, thresh=0.8):
    embs = embedder.encode(captions, convert_to_tensor=True)
    q   = embedder.encode(prompt, convert_to_tensor=True)
    sims = util.cos_sim(q, embs)[0]
    return [i for i,s in enumerate(sims) if s>=thresh], sims.tolist()


# ─── 6. TRIMMING ────────────────────────────────────────────────────────────────

def remove_scenes(video_path, scenes, to_remove, out="trimmed.mp4"):
    times = [(float(s.get_seconds()), float(e.get_seconds())) for s,e in scenes]

    # Group deletions
    remove_groups = group_indices(to_remove)

    # Threshold: max N consecutive scenes to allow trimming
    MAX_REMOVE_GROUP_SIZE = 4

    # Adjust `to_remove`: only allow small groups or isolated removals
    filtered_remove = []
    if len(scenes) > 3:
        last_scene_idx = len(scenes) - 1
        for i in range(last_scene_idx - 2, last_scene_idx + 1):
            if i in filtered_remove:
                filtered_remove.remove(i)

    for group in remove_groups:
        if len(group) <= MAX_REMOVE_GROUP_SIZE:
            filtered_remove.extend(group)

    print(f"🧩 Filtered scenes to remove (after capping long chunks): {filtered_remove}")

    # Final list of segments to keep
    keep = [t for i,t in enumerate(times) if i not in filtered_remove]


    # Create a temporary directory for segments
    os.makedirs("temp_segments", exist_ok=True)
    
    try:
        parts = []
        for i,(ss,tt) in enumerate(keep):
            fn = os.path.join("temp_segments", f"segment_{i}.mp4")
            # Use proper encoding settings to maintain frame integrity
            run_ffmpeg([
                "-i", video_path,
                "-ss", str(ss),
                "-to", str(tt),
                "-c:v", "libx264",  # Use H.264 codec
                "-preset", "medium",  # Balance between speed and quality
                "-crf", "23",  # Constant Rate Factor for quality
                "-c:a", "aac",  # Audio codec
                "-b:a", "128k",  # Audio bitrate
                "-movflags", "+faststart",  # Enable fast start for web playback
                fn
            ])
            parts.append(fn)

        # Create concat file
        with open("parts.txt", "w") as f:
            for p in parts:
                f.write(f"file '{p}'\n")

        # Concatenate segments with proper encoding
        run_ffmpeg([
            "-f", "concat",
            "-safe", "0",
            "-i", "parts.txt",
            "-c:v", "libx264",
            "-preset", "medium",
            "-crf", "23",
            "-c:a", "aac",
            "-b:a", "128k",
            "-movflags", "+faststart",
            out
        ])

    finally:
        # Cleanup
        for p in parts:
            if os.path.exists(p):
                os.remove(p)
        if os.path.exists("parts.txt"):
            os.remove("parts.txt")
        if os.path.exists("temp_segments"):
            os.rmdir("temp_segments")


# ─── 7. MAIN PIPELINE ──────────────────────────────────────────────────────────

def run(video, query):
    print(f"\n🎥 Video: {video}\n🔎 Query: '{query}'\n")

    scenes    = detect_scenes(video)
    print(f"🔢 {len(scenes)} scenes detected.")

    keyframes = extract_keyframes(video, scenes)
    print(f"🖼️ {len(keyframes)} keyframes extracted.\n")

    captions = [generate_scene_caption(f) for _, f in tqdm(keyframes, desc="Generating captions")]
    summary  = generate_video_summary(captions)
    print("\n--- Video Summary ---")
    print(summary)

    # 🧠 Let the LLM decide which scenes to remove based on captions
    to_remove = filter_scenes_with_llm(captions, query, groq_llm)
    print(f"\n🔴 Scenes to remove: {to_remove}")

    if to_remove:
        remove_scenes(video, scenes, to_remove)
        print("✅ Trimmed video saved as `trimmed.mp4`.")
    else:
        print("⚠️ No matching scenes found; no trimming done.")

    return to_remove  # Optional: return for external use

# ─── 8. ENTRY POINT ─────────────────────────────────────────────────────────────

if __name__ == "__main__":
    if len(sys.argv)<3:
        print("Usage: python main.py <video.mp4> \"your query here\"")
        sys.exit(1)
    run(sys.argv[1], sys.argv[2])