Spaces:
Running
Running
zamalali
commited on
Commit
·
9a14671
1
Parent(s):
03b7d0b
Clean push: only core files
Browse files- .gitignore +1 -0
- app.py +251 -0
- main.py +372 -0
- requirements.txt +23 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
.env
|
app.py
ADDED
|
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
import spaces
|
| 6 |
+
|
| 7 |
+
from main import (
|
| 8 |
+
run,
|
| 9 |
+
detect_scenes,
|
| 10 |
+
extract_keyframes,
|
| 11 |
+
generate_scene_caption,
|
| 12 |
+
generate_video_summary,
|
| 13 |
+
generate_video_summary_groq,
|
| 14 |
+
vqa_matches,
|
| 15 |
+
semantic_matches,
|
| 16 |
+
remove_scenes,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# Load environment variables
|
| 20 |
+
load_dotenv()
|
| 21 |
+
if not os.getenv("HF_TOKEN"):
|
| 22 |
+
raise ValueError("❌ Error: HF_TOKEN not found in .env file")
|
| 23 |
+
|
| 24 |
+
@spaces.GPU
|
| 25 |
+
def process_video(video_path, query, progress=gr.Progress()):
|
| 26 |
+
"""Scene‐filtering tab: remove scenes matching the query."""
|
| 27 |
+
try:
|
| 28 |
+
os.makedirs("outputs", exist_ok=True)
|
| 29 |
+
output_path = os.path.join("outputs", "trimmed_video.mp4")
|
| 30 |
+
|
| 31 |
+
# 1) Detect scenes
|
| 32 |
+
progress(0.0, desc="Detecting scenes...")
|
| 33 |
+
scenes = detect_scenes(video_path)
|
| 34 |
+
|
| 35 |
+
# 2) Extract keyframes
|
| 36 |
+
progress(0.2, desc="Extracting keyframes...")
|
| 37 |
+
keyframes = extract_keyframes(video_path, scenes)
|
| 38 |
+
|
| 39 |
+
# 3) Caption each keyframe
|
| 40 |
+
progress(0.4, desc="Generating captions...")
|
| 41 |
+
captions = [generate_scene_caption(frame) for _, frame in keyframes]
|
| 42 |
+
|
| 43 |
+
# 4) VQA + semantic filtering
|
| 44 |
+
progress(0.6, desc="Analyzing scenes...")
|
| 45 |
+
vqa_mask = vqa_matches(keyframes, query)
|
| 46 |
+
sem_idxs, _= semantic_matches(captions, query)
|
| 47 |
+
|
| 48 |
+
# 5) Build removal list
|
| 49 |
+
to_remove = sorted({i for i, flag in enumerate(vqa_mask) if flag} | set(sem_idxs))
|
| 50 |
+
|
| 51 |
+
# 6) Trim via ffmpeg
|
| 52 |
+
progress(0.8, desc="Processing video...")
|
| 53 |
+
if to_remove:
|
| 54 |
+
remove_scenes(video_path, scenes, to_remove, output_path)
|
| 55 |
+
|
| 56 |
+
# Verify the output video
|
| 57 |
+
if not os.path.exists(output_path):
|
| 58 |
+
return None, "❌ Error: Failed to create output video"
|
| 59 |
+
|
| 60 |
+
# Check if video is valid
|
| 61 |
+
cap = cv2.VideoCapture(output_path)
|
| 62 |
+
if not cap.isOpened():
|
| 63 |
+
return None, "❌ Error: Generated video is invalid"
|
| 64 |
+
cap.release()
|
| 65 |
+
|
| 66 |
+
stats = [
|
| 67 |
+
"✅ Processing complete!",
|
| 68 |
+
f"📊 Total scenes: {len(scenes)}",
|
| 69 |
+
f"🗑️ Scenes removed: {len(to_remove)}",
|
| 70 |
+
f"🎬 Scenes kept: {len(scenes)-len(to_remove)}",
|
| 71 |
+
"\n🔍 Scene captions:",
|
| 72 |
+
*[f"[Scene {i}]: {cap}" for i, cap in enumerate(captions)]
|
| 73 |
+
]
|
| 74 |
+
return output_path, "\n".join(stats)
|
| 75 |
+
else:
|
| 76 |
+
return None, "⚠️ No matching scenes found; no trimming done."
|
| 77 |
+
except Exception as e:
|
| 78 |
+
return None, f"❌ Error: {e}"
|
| 79 |
+
|
| 80 |
+
@spaces.GPU
|
| 81 |
+
def generate_video_description(video_path, progress=gr.Progress()):
|
| 82 |
+
"""Video‐description tab: full scene‐by‐scene summary."""
|
| 83 |
+
try:
|
| 84 |
+
progress(0.0, desc="Detecting scenes...")
|
| 85 |
+
scenes = detect_scenes(video_path)
|
| 86 |
+
|
| 87 |
+
progress(0.3, desc="Extracting keyframes...")
|
| 88 |
+
keyframes = extract_keyframes(video_path, scenes)
|
| 89 |
+
|
| 90 |
+
progress(0.6, desc="Captioning scenes...")
|
| 91 |
+
captions = [generate_scene_caption(frame) for _, frame in keyframes]
|
| 92 |
+
|
| 93 |
+
# build & return the summary paragraph
|
| 94 |
+
summary = generate_video_summary(captions)
|
| 95 |
+
return summary
|
| 96 |
+
except Exception as e:
|
| 97 |
+
return f"❌ Error: {e}"
|
| 98 |
+
|
| 99 |
+
@spaces.GPU
|
| 100 |
+
def get_frame_description(video_path, frame_number):
|
| 101 |
+
"""Frame‐analysis tab: caption a single frame."""
|
| 102 |
+
try:
|
| 103 |
+
cap = cv2.VideoCapture(video_path)
|
| 104 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, int(frame_number))
|
| 105 |
+
ret, frame = cap.read()
|
| 106 |
+
cap.release()
|
| 107 |
+
|
| 108 |
+
if not ret:
|
| 109 |
+
return "❌ Invalid frame number"
|
| 110 |
+
return f"Frame {frame_number}:\n{generate_scene_caption(frame)}"
|
| 111 |
+
except Exception as e:
|
| 112 |
+
return f"❌ Error: {e}"
|
| 113 |
+
|
| 114 |
+
# ─── Gradio UI ────────────────────────────────────────────────────────────────
|
| 115 |
+
|
| 116 |
+
with gr.Blocks(theme=gr.themes.Soft(), css="""
|
| 117 |
+
footer {visibility: hidden}
|
| 118 |
+
.custom-footer {
|
| 119 |
+
text-align: center;
|
| 120 |
+
margin-top: 2em;
|
| 121 |
+
margin-bottom: 1em;
|
| 122 |
+
color: #666;
|
| 123 |
+
}
|
| 124 |
+
.description {
|
| 125 |
+
color: #666;
|
| 126 |
+
font-size: 0.9em;
|
| 127 |
+
line-height: 1.5;
|
| 128 |
+
}
|
| 129 |
+
.tech-stack {
|
| 130 |
+
background: #f5f5f5;
|
| 131 |
+
padding: 1em;
|
| 132 |
+
border-radius: 8px;
|
| 133 |
+
margin: 1em 0;
|
| 134 |
+
}
|
| 135 |
+
""") as demo:
|
| 136 |
+
gr.Markdown("""
|
| 137 |
+
# Videoxity
|
| 138 |
+
|
| 139 |
+
A powerful playground for video analysis and manipulation using state-of-the-art Vision-Language models.
|
| 140 |
+
|
| 141 |
+
<div class="description">
|
| 142 |
+
This application demonstrates the capabilities of modern AI in video processing, offering a foundation for developers to build upon and optimize.
|
| 143 |
+
Whether you're exploring scene detection, content filtering, or video summarization, Videoxity provides the tools to experiment with and enhance video understanding.
|
| 144 |
+
</div>
|
| 145 |
+
|
| 146 |
+
<div class="tech-stack">
|
| 147 |
+
<strong>Technical Stack:</strong>
|
| 148 |
+
- Scene Detection: PySceneDetect with ContentDetector
|
| 149 |
+
- Vision Models: BLIP (Image Captioning & VQA)
|
| 150 |
+
- Language Models: Groq LLM (Llama 3.1)
|
| 151 |
+
- Video Processing: OpenCV & FFmpeg
|
| 152 |
+
- Embeddings: BGE-Small for semantic search
|
| 153 |
+
</div>
|
| 154 |
+
""")
|
| 155 |
+
|
| 156 |
+
with gr.Tabs():
|
| 157 |
+
# 1) Scene Filtering
|
| 158 |
+
with gr.TabItem("Frames to Cut"):
|
| 159 |
+
gr.Markdown("""
|
| 160 |
+
### Remove specific scenes from your video
|
| 161 |
+
Upload a video and describe which scenes you want to remove. The AI will analyze each scene and cut out the matching ones.
|
| 162 |
+
|
| 163 |
+
Examples:
|
| 164 |
+
- "Remove the part where there is a cat in the video"
|
| 165 |
+
- "Cut out the scene where people are dancing"
|
| 166 |
+
""")
|
| 167 |
+
with gr.Row():
|
| 168 |
+
with gr.Column():
|
| 169 |
+
vid1 = gr.Video(
|
| 170 |
+
label="Upload Video",
|
| 171 |
+
format="mp4",
|
| 172 |
+
interactive=True
|
| 173 |
+
)
|
| 174 |
+
qry1 = gr.Textbox(
|
| 175 |
+
label="Scenes to Remove",
|
| 176 |
+
placeholder="e.g., 'Remove the part where there is a cat in the video'",
|
| 177 |
+
lines=2
|
| 178 |
+
)
|
| 179 |
+
btn1 = gr.Button("Process Video", variant="primary")
|
| 180 |
+
with gr.Column():
|
| 181 |
+
outVid = gr.Video(
|
| 182 |
+
label="Processed Video",
|
| 183 |
+
format="mp4",
|
| 184 |
+
interactive=True
|
| 185 |
+
)
|
| 186 |
+
outTxt = gr.Textbox(label="Results", lines=10)
|
| 187 |
+
btn1.click(
|
| 188 |
+
fn=process_video,
|
| 189 |
+
inputs=[vid1, qry1],
|
| 190 |
+
outputs=[outVid, outTxt]
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
# 2) Video Description
|
| 194 |
+
with gr.TabItem("Video Description"):
|
| 195 |
+
gr.Markdown("""
|
| 196 |
+
### Generate a comprehensive description of your video
|
| 197 |
+
Get AI-generated descriptions for all scenes in your video.
|
| 198 |
+
""")
|
| 199 |
+
with gr.Row():
|
| 200 |
+
with gr.Column():
|
| 201 |
+
vid2 = gr.Video(label="Upload Video")
|
| 202 |
+
btn2 = gr.Button("Generate Description", variant="primary")
|
| 203 |
+
with gr.Column():
|
| 204 |
+
outDesc = gr.Textbox(
|
| 205 |
+
label="Video Description",
|
| 206 |
+
lines=15,
|
| 207 |
+
show_copy_button=True
|
| 208 |
+
)
|
| 209 |
+
btn2.click(
|
| 210 |
+
fn=generate_video_description,
|
| 211 |
+
inputs=[vid2],
|
| 212 |
+
outputs=[outDesc]
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
# 3) Frame Analysis
|
| 216 |
+
with gr.TabItem("Frame Analysis"):
|
| 217 |
+
gr.Markdown("""
|
| 218 |
+
### Analyze specific frames in your video
|
| 219 |
+
Get detailed descriptions for individual frames.
|
| 220 |
+
""")
|
| 221 |
+
with gr.Row():
|
| 222 |
+
with gr.Column():
|
| 223 |
+
vid3 = gr.Video(label="Upload Video")
|
| 224 |
+
fn3 = gr.Number(
|
| 225 |
+
label="Frame Number",
|
| 226 |
+
value=0,
|
| 227 |
+
precision=0,
|
| 228 |
+
minimum=0
|
| 229 |
+
)
|
| 230 |
+
btn3 = gr.Button("Analyze Frame", variant="primary")
|
| 231 |
+
with gr.Column():
|
| 232 |
+
outFrm = gr.Textbox(
|
| 233 |
+
label="Frame Description",
|
| 234 |
+
lines=5,
|
| 235 |
+
show_copy_button=True
|
| 236 |
+
)
|
| 237 |
+
btn3.click(
|
| 238 |
+
fn=get_frame_description,
|
| 239 |
+
inputs=[vid3, fn3],
|
| 240 |
+
outputs=[outFrm]
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
# Add custom centered footer
|
| 244 |
+
gr.Markdown("""
|
| 245 |
+
<div class="custom-footer">
|
| 246 |
+
Made with ❤️
|
| 247 |
+
</div>
|
| 248 |
+
""", elem_classes=["custom-footer"])
|
| 249 |
+
|
| 250 |
+
if __name__ == "__main__":
|
| 251 |
+
demo.launch(share=True, show_error=True, show_api=False)
|
main.py
ADDED
|
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import cv2
|
| 4 |
+
import subprocess
|
| 5 |
+
from tqdm import tqdm # add this at the top
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from dotenv import load_dotenv
|
| 8 |
+
from langchain_groq import ChatGroq
|
| 9 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 10 |
+
from transformers import pipeline
|
| 11 |
+
from scenedetect import SceneManager, open_video, ContentDetector
|
| 12 |
+
from sentence_transformers import SentenceTransformer, util
|
| 13 |
+
|
| 14 |
+
# ─── 1. AUTH & MODELS ────────────────────────────────────────────────────────────
|
| 15 |
+
|
| 16 |
+
# Load environment variables
|
| 17 |
+
load_dotenv()
|
| 18 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 19 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
| 20 |
+
|
| 21 |
+
if not HF_TOKEN:
|
| 22 |
+
print("❌ Error: HF_TOKEN not found in .env file")
|
| 23 |
+
sys.exit(1)
|
| 24 |
+
|
| 25 |
+
# Initialize models with proper configurations
|
| 26 |
+
captioner = pipeline(
|
| 27 |
+
"image-to-text",
|
| 28 |
+
model="Salesforce/blip-image-captioning-base",
|
| 29 |
+
device="cpu"
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
vl_pipeline = pipeline(
|
| 33 |
+
"visual-question-answering",
|
| 34 |
+
model="Salesforce/blip-vqa-base",
|
| 35 |
+
device="cpu"
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
elaborator = pipeline(
|
| 39 |
+
"text-generation",
|
| 40 |
+
model="gpt2-medium",
|
| 41 |
+
device="cpu",
|
| 42 |
+
max_new_tokens=500, # Use max_new_tokens instead of max_length
|
| 43 |
+
do_sample=True,
|
| 44 |
+
top_p=0.9,
|
| 45 |
+
temperature=0.7
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
embedder = SentenceTransformer("BAAI/bge-small-en-v1.5")
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# ─── 2. HELPERS ──────────────────────────────────────────────────────────────────
|
| 52 |
+
|
| 53 |
+
def run_ffmpeg(cmd):
|
| 54 |
+
full = ["ffmpeg", "-hide_banner", "-loglevel", "error", "-y"] + cmd
|
| 55 |
+
p = subprocess.Popen(full, stderr=subprocess.PIPE)
|
| 56 |
+
_, err = p.communicate()
|
| 57 |
+
if p.returncode != 0:
|
| 58 |
+
print("❌ FFmpeg error:\n", err.decode())
|
| 59 |
+
sys.exit(1)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# ─── 3. SCENE DETECTION & KEYFRAMES ──────────────────────────────────────────────
|
| 63 |
+
|
| 64 |
+
def detect_scenes(video_path, thresh=15.0):
|
| 65 |
+
v = open_video(video_path)
|
| 66 |
+
mgr = SceneManager()
|
| 67 |
+
mgr.add_detector(ContentDetector(threshold=thresh))
|
| 68 |
+
mgr.detect_scenes(v)
|
| 69 |
+
return mgr.get_scene_list()
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def get_removal_indices_groq(captions, query):
|
| 74 |
+
llm = ChatGroq(
|
| 75 |
+
model="llama-3.1-8b-instant",
|
| 76 |
+
temperature=0.2,
|
| 77 |
+
max_tokens=500
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
prompt = ChatPromptTemplate.from_messages([
|
| 81 |
+
(
|
| 82 |
+
"system",
|
| 83 |
+
"You are a helpful assistant for video analysis. The user will give you a list of scene captions, "
|
| 84 |
+
"each labeled with an index like [1], [2], ..., and a filtering instruction like 'remove food scenes'.\n\n"
|
| 85 |
+
"Return ONLY the list of indexes that should be removed — e.g., [2, 5, 9]\n"
|
| 86 |
+
"⚠️ Do not explain, describe, or add any commentary. Your response MUST be a valid Python list of integers."
|
| 87 |
+
),
|
| 88 |
+
(
|
| 89 |
+
"human",
|
| 90 |
+
"Filtering instruction: {query}\n\nCaptions:\n{captions}"
|
| 91 |
+
)
|
| 92 |
+
])
|
| 93 |
+
|
| 94 |
+
chain = prompt | llm
|
| 95 |
+
captions_formatted = "\n".join(f"[{i+1}] {cap.strip()}" for i, cap in enumerate(captions))
|
| 96 |
+
|
| 97 |
+
try:
|
| 98 |
+
response = chain.invoke({"query": query, "captions": captions_formatted})
|
| 99 |
+
to_remove = eval(response.content.strip())
|
| 100 |
+
|
| 101 |
+
if not isinstance(to_remove, list) or not all(isinstance(i, int) for i in to_remove):
|
| 102 |
+
raise ValueError("Invalid format")
|
| 103 |
+
|
| 104 |
+
except Exception as e:
|
| 105 |
+
print(f"❌ LLM returned invalid output: {response.content}")
|
| 106 |
+
to_remove = []
|
| 107 |
+
|
| 108 |
+
return to_remove
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def groq_llm(prompt):
|
| 112 |
+
llm = ChatGroq(
|
| 113 |
+
model="llama-3.1-8b-instant",
|
| 114 |
+
temperature=0.2,
|
| 115 |
+
max_tokens=500
|
| 116 |
+
)
|
| 117 |
+
return llm.invoke(prompt).content.strip()
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def extract_keyframes(video_path, scenes):
|
| 122 |
+
cap, frames = cv2.VideoCapture(video_path), []
|
| 123 |
+
for s,e in scenes:
|
| 124 |
+
mid = (s.get_frames() + e.get_frames()) // 2
|
| 125 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, mid)
|
| 126 |
+
ok, img = cap.read()
|
| 127 |
+
if ok: frames.append((mid, img))
|
| 128 |
+
cap.release()
|
| 129 |
+
return frames
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
# ─── 4. DESCRIPTIONS & SUMMARY ───────────────────────────────────────────────────
|
| 133 |
+
|
| 134 |
+
def generate_scene_caption(frame):
|
| 135 |
+
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 136 |
+
return captioner(img)[0]["generated_text"]
|
| 137 |
+
|
| 138 |
+
def generate_video_summary_groq(captions):
|
| 139 |
+
"""Generate a video summary using Groq LLM."""
|
| 140 |
+
llm = ChatGroq(
|
| 141 |
+
model="llama-3.1-8b-instant",
|
| 142 |
+
temperature=0.2,
|
| 143 |
+
max_tokens=500
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
prompt = ChatPromptTemplate.from_messages([
|
| 147 |
+
(
|
| 148 |
+
"system",
|
| 149 |
+
"You are a helpful assistant for video analysis. The user will give you a list of scene captions from a video. "
|
| 150 |
+
"Your task is to write a concise, narrative summary of what happens in the video, focusing only on the events shown. "
|
| 151 |
+
"Make it engaging and easy to understand. Do not include any titles, links, or external references."
|
| 152 |
+
),
|
| 153 |
+
(
|
| 154 |
+
"human",
|
| 155 |
+
"Here are the scene captions from the video in order:\n{captions}\n\nPlease provide a narrative summary."
|
| 156 |
+
)
|
| 157 |
+
])
|
| 158 |
+
|
| 159 |
+
chain = prompt | llm
|
| 160 |
+
captions_formatted = "\n".join(f"[{i+1}] {cap.strip()}" for i, cap in enumerate(captions))
|
| 161 |
+
|
| 162 |
+
try:
|
| 163 |
+
response = chain.invoke({"captions": captions_formatted})
|
| 164 |
+
summary = response.content.strip()
|
| 165 |
+
|
| 166 |
+
# Format the final output
|
| 167 |
+
return f"""🎬 Video Summary:
|
| 168 |
+
{summary}
|
| 169 |
+
|
| 170 |
+
📊 Total Scenes: {len(captions)}
|
| 171 |
+
|
| 172 |
+
🔍 Key Moments:
|
| 173 |
+
{chr(10).join(f"• {cap}" for cap in captions[:5])}
|
| 174 |
+
..."""
|
| 175 |
+
except Exception as e:
|
| 176 |
+
print(f"❌ Error generating summary with Groq: {e}")
|
| 177 |
+
return "❌ Error: Failed to generate video summary"
|
| 178 |
+
|
| 179 |
+
def generate_video_summary(captions):
|
| 180 |
+
"""
|
| 181 |
+
Generate a video summary using Groq LLM.
|
| 182 |
+
"""
|
| 183 |
+
return generate_video_summary_groq(captions)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
import ast
|
| 189 |
+
|
| 190 |
+
def filter_scenes_with_llm(captions, query, llm):
|
| 191 |
+
"""
|
| 192 |
+
Uses an LLM to determine which scenes to remove based on captions and a user query.
|
| 193 |
+
|
| 194 |
+
Args:
|
| 195 |
+
captions (List[str]): List of scene/frame captions.
|
| 196 |
+
query (str): User intent, e.g. "Remove scenes with Trump".
|
| 197 |
+
llm (callable): Function to call your LLM, e.g. `llm(prompt)`.
|
| 198 |
+
|
| 199 |
+
Returns:
|
| 200 |
+
List[int]: List of 0-based frame indexes to remove.
|
| 201 |
+
"""
|
| 202 |
+
formatted = "\n".join([f"{i+1}. {cap}" for i, cap in enumerate(captions)])
|
| 203 |
+
prompt = f"""
|
| 204 |
+
You're an intelligent video assistant.
|
| 205 |
+
|
| 206 |
+
The user wants to: **{query}**
|
| 207 |
+
|
| 208 |
+
Below are numbered captions for each scene in a video:
|
| 209 |
+
{formatted}
|
| 210 |
+
|
| 211 |
+
👉 Return a Python list of only the scene numbers that should be removed based on the user query.
|
| 212 |
+
👉 ONLY return the list like this: [3, 5, 11]. No explanation.
|
| 213 |
+
"""
|
| 214 |
+
|
| 215 |
+
# Run LLM
|
| 216 |
+
response = llm(prompt)
|
| 217 |
+
|
| 218 |
+
try:
|
| 219 |
+
result = ast.literal_eval(response.strip())
|
| 220 |
+
result = [i-1 for i in result] # convert to 0-based index
|
| 221 |
+
return result
|
| 222 |
+
except:
|
| 223 |
+
print("⚠️ Failed to parse LLM output:", response)
|
| 224 |
+
return []
|
| 225 |
+
|
| 226 |
+
# ─── 5. FILTERING ───────────────────────────────────────────────────────────────
|
| 227 |
+
def group_indices(indices):
|
| 228 |
+
"""Group consecutive indices together as chunks."""
|
| 229 |
+
if not indices:
|
| 230 |
+
return []
|
| 231 |
+
indices = sorted(indices)
|
| 232 |
+
groups = [[indices[0]]]
|
| 233 |
+
for i in indices[1:]:
|
| 234 |
+
if i == groups[-1][-1] + 1:
|
| 235 |
+
groups[-1].append(i)
|
| 236 |
+
else:
|
| 237 |
+
groups.append([i])
|
| 238 |
+
return groups
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def vqa_matches(keyframes, question):
|
| 243 |
+
flags = []
|
| 244 |
+
for _,frame in keyframes:
|
| 245 |
+
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 246 |
+
ans = vl_pipeline({"image": img, "question": question})
|
| 247 |
+
flags.append("yes" in ans[0]["answer"].lower())
|
| 248 |
+
return flags
|
| 249 |
+
|
| 250 |
+
def semantic_matches(captions, prompt, thresh=0.8):
|
| 251 |
+
embs = embedder.encode(captions, convert_to_tensor=True)
|
| 252 |
+
q = embedder.encode(prompt, convert_to_tensor=True)
|
| 253 |
+
sims = util.cos_sim(q, embs)[0]
|
| 254 |
+
return [i for i,s in enumerate(sims) if s>=thresh], sims.tolist()
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
# ─── 6. TRIMMING ────────────────────────────────────────────────────────────────
|
| 258 |
+
|
| 259 |
+
def remove_scenes(video_path, scenes, to_remove, out="trimmed.mp4"):
|
| 260 |
+
times = [(float(s.get_seconds()), float(e.get_seconds())) for s,e in scenes]
|
| 261 |
+
|
| 262 |
+
# Group deletions
|
| 263 |
+
remove_groups = group_indices(to_remove)
|
| 264 |
+
|
| 265 |
+
# Threshold: max N consecutive scenes to allow trimming
|
| 266 |
+
MAX_REMOVE_GROUP_SIZE = 4
|
| 267 |
+
|
| 268 |
+
# Adjust `to_remove`: only allow small groups or isolated removals
|
| 269 |
+
filtered_remove = []
|
| 270 |
+
if len(scenes) > 3:
|
| 271 |
+
last_scene_idx = len(scenes) - 1
|
| 272 |
+
for i in range(last_scene_idx - 2, last_scene_idx + 1):
|
| 273 |
+
if i in filtered_remove:
|
| 274 |
+
filtered_remove.remove(i)
|
| 275 |
+
|
| 276 |
+
for group in remove_groups:
|
| 277 |
+
if len(group) <= MAX_REMOVE_GROUP_SIZE:
|
| 278 |
+
filtered_remove.extend(group)
|
| 279 |
+
|
| 280 |
+
print(f"🧩 Filtered scenes to remove (after capping long chunks): {filtered_remove}")
|
| 281 |
+
|
| 282 |
+
# Final list of segments to keep
|
| 283 |
+
keep = [t for i,t in enumerate(times) if i not in filtered_remove]
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
# Create a temporary directory for segments
|
| 287 |
+
os.makedirs("temp_segments", exist_ok=True)
|
| 288 |
+
|
| 289 |
+
try:
|
| 290 |
+
parts = []
|
| 291 |
+
for i,(ss,tt) in enumerate(keep):
|
| 292 |
+
fn = os.path.join("temp_segments", f"segment_{i}.mp4")
|
| 293 |
+
# Use proper encoding settings to maintain frame integrity
|
| 294 |
+
run_ffmpeg([
|
| 295 |
+
"-i", video_path,
|
| 296 |
+
"-ss", str(ss),
|
| 297 |
+
"-to", str(tt),
|
| 298 |
+
"-c:v", "libx264", # Use H.264 codec
|
| 299 |
+
"-preset", "medium", # Balance between speed and quality
|
| 300 |
+
"-crf", "23", # Constant Rate Factor for quality
|
| 301 |
+
"-c:a", "aac", # Audio codec
|
| 302 |
+
"-b:a", "128k", # Audio bitrate
|
| 303 |
+
"-movflags", "+faststart", # Enable fast start for web playback
|
| 304 |
+
fn
|
| 305 |
+
])
|
| 306 |
+
parts.append(fn)
|
| 307 |
+
|
| 308 |
+
# Create concat file
|
| 309 |
+
with open("parts.txt", "w") as f:
|
| 310 |
+
for p in parts:
|
| 311 |
+
f.write(f"file '{p}'\n")
|
| 312 |
+
|
| 313 |
+
# Concatenate segments with proper encoding
|
| 314 |
+
run_ffmpeg([
|
| 315 |
+
"-f", "concat",
|
| 316 |
+
"-safe", "0",
|
| 317 |
+
"-i", "parts.txt",
|
| 318 |
+
"-c:v", "libx264",
|
| 319 |
+
"-preset", "medium",
|
| 320 |
+
"-crf", "23",
|
| 321 |
+
"-c:a", "aac",
|
| 322 |
+
"-b:a", "128k",
|
| 323 |
+
"-movflags", "+faststart",
|
| 324 |
+
out
|
| 325 |
+
])
|
| 326 |
+
|
| 327 |
+
finally:
|
| 328 |
+
# Cleanup
|
| 329 |
+
for p in parts:
|
| 330 |
+
if os.path.exists(p):
|
| 331 |
+
os.remove(p)
|
| 332 |
+
if os.path.exists("parts.txt"):
|
| 333 |
+
os.remove("parts.txt")
|
| 334 |
+
if os.path.exists("temp_segments"):
|
| 335 |
+
os.rmdir("temp_segments")
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
# ─── 7. MAIN PIPELINE ──────────────────────────────────────────────────────────
|
| 339 |
+
|
| 340 |
+
def run(video, query):
|
| 341 |
+
print(f"\n🎥 Video: {video}\n🔎 Query: '{query}'\n")
|
| 342 |
+
|
| 343 |
+
scenes = detect_scenes(video)
|
| 344 |
+
print(f"🔢 {len(scenes)} scenes detected.")
|
| 345 |
+
|
| 346 |
+
keyframes = extract_keyframes(video, scenes)
|
| 347 |
+
print(f"🖼️ {len(keyframes)} keyframes extracted.\n")
|
| 348 |
+
|
| 349 |
+
captions = [generate_scene_caption(f) for _, f in tqdm(keyframes, desc="Generating captions")]
|
| 350 |
+
summary = generate_video_summary(captions)
|
| 351 |
+
print("\n--- Video Summary ---")
|
| 352 |
+
print(summary)
|
| 353 |
+
|
| 354 |
+
# 🧠 Let the LLM decide which scenes to remove based on captions
|
| 355 |
+
to_remove = filter_scenes_with_llm(captions, query, groq_llm)
|
| 356 |
+
print(f"\n🔴 Scenes to remove: {to_remove}")
|
| 357 |
+
|
| 358 |
+
if to_remove:
|
| 359 |
+
remove_scenes(video, scenes, to_remove)
|
| 360 |
+
print("✅ Trimmed video saved as `trimmed.mp4`.")
|
| 361 |
+
else:
|
| 362 |
+
print("⚠️ No matching scenes found; no trimming done.")
|
| 363 |
+
|
| 364 |
+
return to_remove # Optional: return for external use
|
| 365 |
+
|
| 366 |
+
# ─── 8. ENTRY POINT ─────────────────────────────────────────────────────────────
|
| 367 |
+
|
| 368 |
+
if __name__ == "__main__":
|
| 369 |
+
if len(sys.argv)<3:
|
| 370 |
+
print("Usage: python main.py <video.mp4> \"your query here\"")
|
| 371 |
+
sys.exit(1)
|
| 372 |
+
run(sys.argv[1], sys.argv[2])
|
requirements.txt
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core dependencies
|
| 2 |
+
gradio>=4.19.2
|
| 3 |
+
opencv-python>=4.9.0.80
|
| 4 |
+
python-dotenv>=1.0.0
|
| 5 |
+
Pillow>=10.2.0
|
| 6 |
+
spaces>=0.1.0
|
| 7 |
+
|
| 8 |
+
# Video processing
|
| 9 |
+
scenedetect>=0.6.3
|
| 10 |
+
ffmpeg-python>=0.2.0
|
| 11 |
+
|
| 12 |
+
# AI/ML models
|
| 13 |
+
transformers>=4.37.2
|
| 14 |
+
sentence-transformers>=2.5.1
|
| 15 |
+
torch>=2.2.0
|
| 16 |
+
|
| 17 |
+
# LLM and embeddings
|
| 18 |
+
langchain-groq>=0.0.1
|
| 19 |
+
langchain-core>=0.1.27
|
| 20 |
+
|
| 21 |
+
# Utilities
|
| 22 |
+
tqdm>=4.66.1
|
| 23 |
+
numpy>=1.26.3
|