Spaces:
Running
Running
File size: 9,411 Bytes
9a14671 7cf4dc6 9a14671 7cf4dc6 9a14671 7cf4dc6 9a14671 7cf4dc6 9a14671 7cf4dc6 9a14671 7cf4dc6 9a14671 7cf4dc6 9a14671 7cf4dc6 9a14671 7cf4dc6 9a14671 7cf4dc6 9a14671 7cf4dc6 9a14671 7cf4dc6 9a14671 7cf4dc6 9a14671 7cf4dc6 9a14671 7cf4dc6 9a14671 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import os
import cv2
import gradio as gr
from dotenv import load_dotenv
import spaces
from main import (
run,
detect_scenes,
extract_keyframes,
generate_scene_caption,
generate_video_summary,
generate_video_summary_groq,
vqa_matches,
semantic_matches,
remove_scenes,
)
# Load environment variables
load_dotenv()
if not os.getenv("HF_TOKEN"):
raise ValueError("❌ Error: HF_TOKEN not found in .env file")
def process_video(video_path, query, progress=gr.Progress()):
"""Scene‐filtering tab: remove scenes matching the query."""
try:
os.makedirs("outputs", exist_ok=True)
output_path = os.path.join("outputs", "trimmed_video.mp4")
# 1) Detect scenes
progress(0.0, desc="Detecting scenes...")
scenes = detect_scenes(video_path)
# 2) Extract keyframes
progress(0.2, desc="Extracting keyframes...")
keyframes = extract_keyframes(video_path, scenes)
# 3) Caption each keyframe
progress(0.4, desc="Generating captions...")
captions = [generate_scene_caption(frame) for _, frame in keyframes]
# 4) VQA + semantic filtering
progress(0.6, desc="Analyzing scenes...")
vqa_mask = vqa_matches(keyframes, query)
sem_idxs, _= semantic_matches(captions, query)
# 5) Build removal list
to_remove = sorted({i for i, flag in enumerate(vqa_mask) if flag} | set(sem_idxs))
# 6) Trim via ffmpeg
progress(0.8, desc="Processing video...")
if to_remove:
remove_scenes(video_path, scenes, to_remove, output_path)
# Verify the output video
if not os.path.exists(output_path):
return None, "❌ Error: Failed to create output video"
# Check if video is valid
cap = cv2.VideoCapture(output_path)
if not cap.isOpened():
return None, "❌ Error: Generated video is invalid"
cap.release()
stats = [
"✅ Processing complete!",
f"📊 Total scenes: {len(scenes)}",
f"🗑️ Scenes removed: {len(to_remove)}",
f"🎬 Scenes kept: {len(scenes)-len(to_remove)}",
"\n🔍 Scene captions:",
*[f"[Scene {i}]: {cap}" for i, cap in enumerate(captions)]
]
return output_path, "\n".join(stats)
else:
return None, "⚠️ No matching scenes found; no trimming done."
except Exception as e:
return None, f"❌ Error: {e}"
def generate_video_description(video_path, progress=gr.Progress()):
"""Video‐description tab: full scene‐by‐scene summary."""
try:
progress(0.0, desc="Detecting scenes...")
scenes = detect_scenes(video_path)
progress(0.3, desc="Extracting keyframes...")
keyframes = extract_keyframes(video_path, scenes)
progress(0.6, desc="Captioning scenes...")
captions = [generate_scene_caption(frame) for _, frame in keyframes]
# build & return the summary paragraph
summary = generate_video_summary(captions)
return summary
except Exception as e:
return f"❌ Error: {e}"
@spaces.GPU
def get_frame_description(video_path, frame_number):
"""Frame‐analysis tab: show scene descriptions."""
try:
# Get scenes and keyframes
scenes = detect_scenes(video_path)
keyframes = extract_keyframes(video_path, scenes)
# Generate captions for all scenes
captions = [generate_scene_caption(frame) for _, frame in keyframes]
# Format the output with timestamps
output = []
for i, ((start, end), caption) in enumerate(zip(scenes, captions)):
start_time = start.get_seconds()
end_time = end.get_seconds()
output.append(f"Scene {i+1} ({start_time:.1f}s - {end_time:.1f}s):\n{caption}\n")
return "\n".join(output)
except Exception as e:
return f"❌ Error: {e}"
# ─── Gradio UI ────────────────────────────────────────────────────────────────
with gr.Blocks(theme=gr.themes.Soft(), css="""
footer {visibility: hidden}
.custom-footer {
text-align: center;
margin-top: 2em;
margin-bottom: 1em;
color: #666;
}
.description {
color: #666;
font-size: 0.9em;
line-height: 1.5;
}
.tech-stack {
background: var(--background-fill-secondary);
padding: 1em;
border-radius: 8px;
margin: 1em 0;
border: 1px solid var(--border-color-primary);
color: var(--body-text-color);
}
""") as demo:
gr.Markdown("""
# Videoxity
A powerful playground for video analysis and manipulation using state-of-the-art Vision-Language models.
<div class="description">
This application demonstrates the capabilities of modern computer vision and natural language processing models in video processing, offering a foundation for developers to build upon and optimize.
Whether you're exploring scene detection, content filtering, or video summarization, Videoxity provides the tools to experiment with and enhance video understanding.
⚠️ Note: This demo is running entirely on CPU. For faster processing, either run it locally or duplicate the space.
</div>
<div class="tech-stack">
<strong>Technical Stack:</strong>
- Scene Detection: PySceneDetect with ContentDetector
- Vision Models: BLIP (Image Captioning & VQA)
- Language Models: Groq LLM (Llama 3.1)
- Video Processing: OpenCV & FFmpeg
- Embeddings: BGE-Small for semantic search
</div>
""")
with gr.Tabs():
# 1) Scene Filtering
with gr.TabItem("Frames to Cut"):
gr.Markdown("""
### Remove specific scenes from your video
Upload a video and describe which scenes you want to remove. The BLIP Vision-Language model will analyze each scene and cut out the matching ones.
Examples:
- "Remove the part where there is a cat in the video"
- "Cut out the scene where people are dancing"
""")
with gr.Row():
with gr.Column():
vid1 = gr.Video(
label="Upload Video",
format="mp4",
interactive=True
)
qry1 = gr.Textbox(
label="Scenes to Remove",
placeholder="e.g., 'Remove the part where there is a cat in the video'",
lines=2
)
btn1 = gr.Button("Process Video", variant="primary")
with gr.Column():
outVid = gr.Video(
label="Processed Video",
format="mp4",
interactive=True
)
outTxt = gr.Textbox(label="Results", lines=10)
btn1.click(
fn=process_video,
inputs=[vid1, qry1],
outputs=[outVid, outTxt]
)
# 2) Video Description
with gr.TabItem("Video Description"):
gr.Markdown("""
### Generate a comprehensive description of your video
Get BLIP-generated scene descriptions and a Llama 3.1-powered narrative summary of your video.
""")
with gr.Row():
with gr.Column():
vid2 = gr.Video(label="Upload Video")
btn2 = gr.Button("Generate Description", variant="primary")
with gr.Column():
outDesc = gr.Textbox(
label="Video Description",
lines=15,
show_copy_button=True
)
btn2.click(
fn=generate_video_description,
inputs=[vid2],
outputs=[outDesc]
)
# 3) Frame Analysis
with gr.TabItem("Frame Analysis"):
gr.Markdown("""
### Analyze scenes in your video
Get detailed scene descriptions using BLIP's image captioning model, with precise timestamps for each scene.
""")
with gr.Row():
with gr.Column():
vid3 = gr.Video(label="Upload Video")
btn3 = gr.Button("Analyze Scenes", variant="primary")
with gr.Column():
outFrm = gr.Textbox(
label="Scene Descriptions",
lines=15,
show_copy_button=True
)
btn3.click(
fn=get_frame_description,
inputs=[vid3],
outputs=[outFrm]
)
# Add custom centered footer
gr.Markdown("""
<div class="custom-footer">
Made with ❤️
</div>
""", elem_classes=["custom-footer"])
if __name__ == "__main__":
demo.launch(share=True, show_error=True, show_api=False)
|