File size: 7,039 Bytes
0f7f5eb
67896be
 
 
6196c52
0f7f5eb
6196c52
0f7f5eb
 
 
67896be
856f007
67896be
 
 
 
 
 
 
 
 
 
 
37ae657
 
3286ec0
37ae657
 
 
3286ec0
 
6196c52
 
 
 
 
 
 
 
3286ec0
 
 
 
 
6196c52
3286ec0
6196c52
 
 
3286ec0
 
 
 
 
6196c52
3286ec0
 
6196c52
 
3286ec0
 
6196c52
 
3286ec0
 
 
 
 
 
 
 
 
 
 
 
0f7f5eb
 
 
 
3286ec0
0f7f5eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3286ec0
 
67896be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
856f007
67896be
 
 
856f007
67896be
 
 
 
 
856f007
 
 
 
 
67896be
 
 
 
ba01344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67896be
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
from fastapi import FastAPI, File, UploadFile
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import cv2
import gradio as gr
import mediapipe as mp
import numpy as np
from PIL import Image
from gradio_client import Client, handle_file
import io
import base64

app = FastAPI()

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

example_path = os.path.join(os.path.dirname(__file__), 'example')

garm_list = os.listdir(os.path.join(example_path, "cloth"))
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]

human_list = os.listdir(os.path.join(example_path, "human"))
human_list_path = [os.path.join(example_path, "human", human) for human in human_list]

# Initialize MediaPipe Pose
mp_pose = mp.solutions.pose
pose = mp_pose.Pose(static_image_mode=True)
mp_drawing = mp.solutions.drawing_utils
mp_pose_landmark = mp_pose.PoseLandmark


def detect_pose(image):
    # Convert to RGB
    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    # Run pose detection
    result = pose.process(image_rgb)

    keypoints = {}

    if result.pose_landmarks:
        # Draw landmarks on image
        mp_drawing.draw_landmarks(image, result.pose_landmarks, mp_pose.POSE_CONNECTIONS)

        # Get image dimensions
        height, width, _ = image.shape

        # Extract specific landmarks
        landmark_indices = {
            'left_shoulder': mp_pose_landmark.LEFT_SHOULDER,
            'right_shoulder': mp_pose_landmark.RIGHT_SHOULDER,
            'left_hip': mp_pose_landmark.LEFT_HIP,
            'right_hip': mp_pose_landmark.RIGHT_HIP
        }

        for name, index in landmark_indices.items():
            lm = result.pose_landmarks.landmark[index]
            x, y = int(lm.x * width), int(lm.y * height)
            keypoints[name] = (x, y)

            # Draw a circle + label for debug
            cv2.circle(image, (x, y), 5, (0, 255, 0), -1)
            cv2.putText(image, name, (x + 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)

    return image


def align_clothing(body_img, clothing_img):
    image_rgb = cv2.cvtColor(body_img, cv2.COLOR_BGR2RGB)
    result = pose.process(image_rgb)
    output = body_img.copy()

    if result.pose_landmarks:
        h, w, _ = output.shape

        # Extract key points
        def get_point(landmark_id):
            lm = result.pose_landmarks.landmark[landmark_id]
            return int(lm.x * w), int(lm.y * h)

        left_shoulder = get_point(mp_pose_landmark.LEFT_SHOULDER)
        right_shoulder = get_point(mp_pose_landmark.RIGHT_SHOULDER)
        left_hip = get_point(mp_pose_landmark.LEFT_HIP)
        right_hip = get_point(mp_pose_landmark.RIGHT_HIP)

        # Destination box (torso region)
        dst_pts = np.array([
            left_shoulder,
            right_shoulder,
            right_hip,
            left_hip
        ], dtype=np.float32)

        # Source box (clothing image corners)
        src_h, src_w = clothing_img.shape[:2]
        src_pts = np.array([
            [0, 0],
            [src_w, 0],
            [src_w, src_h],
            [0, src_h]
        ], dtype=np.float32)

        # Compute perspective transform and warp
        matrix = cv2.getPerspectiveTransform(src_pts, dst_pts)
        warped_clothing = cv2.warpPerspective(clothing_img, matrix, (w, h), borderMode=cv2.BORDER_TRANSPARENT)

        # Handle transparency
        if clothing_img.shape[2] == 4:
            alpha = warped_clothing[:, :, 3] / 255.0
            for c in range(3):
                output[:, :, c] = (1 - alpha) * output[:, :, c] + alpha * warped_clothing[:, :, c]
        else:
            output = cv2.addWeighted(output, 0.8, warped_clothing, 0.5, 0)

    return output


def process_image(human_img_path, garm_img_path):
    client = Client("franciszzj/Leffa")

    result = client.predict(
        src_image_path=handle_file(human_img_path),
        ref_image_path=handle_file(garm_img_path),
        ref_acceleration=False,
        step=30,
        scale=2.5,
        seed=42,
        vt_model_type="viton_hd",
        vt_garment_type="upper_body",
        vt_repaint=False,
        api_name="/leffa_predict_vt"
    )

    print(result)
    generated_image_path = result[0]
    print("generated_image_path" + generated_image_path)
    generated_image = Image.open(generated_image_path)

    return generated_image


@app.post("/")
async def try_on_api(human_image: UploadFile = File(...), garment_image: UploadFile = File(...)):
    try:
        # Read the uploaded files
        human_content = await human_image.read()
        garment_content = await garment_image.read()
        
        # Convert to PIL Image
        human_img = Image.open(io.BytesIO(human_content))
        garment_img = Image.open(io.BytesIO(garment_content))
        
        # Save temporarily to process
        human_path = "temp_human.jpg"
        garment_path = "temp_garment.jpg"
        human_img.save(human_path)
        garment_img.save(garment_path)
        
        # Process the images
        result = process_image(human_path, garment_path)
        
        # Convert result to base64
        img_byte_arr = io.BytesIO()
        result.save(img_byte_arr, format='PNG')
        img_byte_arr = img_byte_arr.getvalue()
        base64_image = base64.b64encode(img_byte_arr).decode('utf-8')
        
        # Clean up temporary files
        os.remove(human_path)
        os.remove(garment_path)
        
        return {
            "status": "success",
            "image": base64_image,
            "format": "base64"
        }
    except Exception as e:
        return {"status": "error", "message": str(e)}

# Create the Gradio interface
image_blocks = gr.Blocks().queue()
with image_blocks as demo:
    gr.HTML("<center><h1>Virtual Try-On</h1></center>")
    gr.HTML("<center><p>Upload an image of a person and an image of a garment ✨</p></center>")
    with gr.Row():
        with gr.Column():
            human_img = gr.Image(type="filepath", label='Human', interactive=True)
            example = gr.Examples(
                inputs=human_img,
                examples_per_page=10,
                examples=human_list_path
            )

        with gr.Column():
            garm_img = gr.Image(label="Garment", type="filepath", interactive=True)
            example = gr.Examples(
                inputs=garm_img,
                examples_per_page=8,
                examples=garm_list_path)
        with gr.Column():
            image_out = gr.Image(label="Processed image", type="pil")

    with gr.Row():
        try_button = gr.Button(value="Try-on", variant='primary')

    # Linking the button to the processing function
    try_button.click(fn=process_image, inputs=[human_img, garm_img], outputs=image_out)

# Mount Gradio app
app = gr.mount_gradio_app(app, demo, path="/gradio")

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)