Spaces:
Running
Running
jocoandonob
commited on
Commit
·
67896be
1
Parent(s):
ba01344
revertv
Browse files- app.py +54 -2
- requirements.txt +3 -0
app.py
CHANGED
@@ -1,11 +1,25 @@
|
|
1 |
import os
|
2 |
-
|
|
|
|
|
3 |
import cv2
|
4 |
import gradio as gr
|
5 |
import mediapipe as mp
|
6 |
import numpy as np
|
7 |
from PIL import Image
|
8 |
from gradio_client import Client, handle_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
11 |
|
@@ -132,6 +146,40 @@ def process_image(human_img_path, garm_img_path):
|
|
132 |
return generated_image
|
133 |
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
image_blocks = gr.Blocks().queue()
|
136 |
with image_blocks as demo:
|
137 |
gr.HTML("<center><h1>Virtual Try-On</h1></center>")
|
@@ -160,4 +208,8 @@ with image_blocks as demo:
|
|
160 |
# Linking the button to the processing function
|
161 |
try_button.click(fn=process_image, inputs=[human_img, garm_img], outputs=image_out)
|
162 |
|
163 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from fastapi import FastAPI, File, UploadFile
|
3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
4 |
+
import uvicorn
|
5 |
import cv2
|
6 |
import gradio as gr
|
7 |
import mediapipe as mp
|
8 |
import numpy as np
|
9 |
from PIL import Image
|
10 |
from gradio_client import Client, handle_file
|
11 |
+
import io
|
12 |
+
|
13 |
+
app = FastAPI()
|
14 |
+
|
15 |
+
# Add CORS middleware
|
16 |
+
app.add_middleware(
|
17 |
+
CORSMiddleware,
|
18 |
+
allow_origins=["*"],
|
19 |
+
allow_credentials=True,
|
20 |
+
allow_methods=["*"],
|
21 |
+
allow_headers=["*"],
|
22 |
+
)
|
23 |
|
24 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
25 |
|
|
|
146 |
return generated_image
|
147 |
|
148 |
|
149 |
+
@app.post("/")
|
150 |
+
async def try_on_api(human_image: UploadFile = File(...), garment_image: UploadFile = File(...)):
|
151 |
+
try:
|
152 |
+
# Read the uploaded files
|
153 |
+
human_content = await human_image.read()
|
154 |
+
garment_content = await garment_image.read()
|
155 |
+
|
156 |
+
# Convert to PIL Image
|
157 |
+
human_img = Image.open(io.BytesIO(human_content))
|
158 |
+
garment_img = Image.open(io.BytesIO(garment_content))
|
159 |
+
|
160 |
+
# Save temporarily to process
|
161 |
+
human_path = "temp_human.jpg"
|
162 |
+
garment_path = "temp_garment.jpg"
|
163 |
+
human_img.save(human_path)
|
164 |
+
garment_img.save(garment_path)
|
165 |
+
|
166 |
+
# Process the images
|
167 |
+
result = process_image(human_path, garment_path)
|
168 |
+
|
169 |
+
# Convert result to bytes
|
170 |
+
img_byte_arr = io.BytesIO()
|
171 |
+
result.save(img_byte_arr, format='PNG')
|
172 |
+
img_byte_arr = img_byte_arr.getvalue()
|
173 |
+
|
174 |
+
# Clean up temporary files
|
175 |
+
os.remove(human_path)
|
176 |
+
os.remove(garment_path)
|
177 |
+
|
178 |
+
return {"status": "success", "image": img_byte_arr}
|
179 |
+
except Exception as e:
|
180 |
+
return {"status": "error", "message": str(e)}
|
181 |
+
|
182 |
+
# Create the Gradio interface
|
183 |
image_blocks = gr.Blocks().queue()
|
184 |
with image_blocks as demo:
|
185 |
gr.HTML("<center><h1>Virtual Try-On</h1></center>")
|
|
|
208 |
# Linking the button to the processing function
|
209 |
try_button.click(fn=process_image, inputs=[human_img, garm_img], outputs=image_out)
|
210 |
|
211 |
+
# Mount Gradio app
|
212 |
+
app = gr.mount_gradio_app(app, demo, path="/gradio")
|
213 |
+
|
214 |
+
if __name__ == "__main__":
|
215 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
requirements.txt
CHANGED
@@ -4,4 +4,7 @@ opencv-contrib-python==4.11.0.86
|
|
4 |
opencv-python==4.11.0.86
|
5 |
gradio==5.23.3
|
6 |
gradio_client==1.8.0
|
|
|
|
|
|
|
7 |
|
|
|
4 |
opencv-python==4.11.0.86
|
5 |
gradio==5.23.3
|
6 |
gradio_client==1.8.0
|
7 |
+
fastapi==0.110.0
|
8 |
+
uvicorn==0.27.1
|
9 |
+
python-multipart==0.0.9
|
10 |
|