Spaces:
Running
Running
import torch | |
import numpy as np | |
import logging | |
import plotly.graph_objects as go | |
from typing import Tuple, Dict | |
# Advanced analysis imports | |
import shap | |
import lime | |
from lime.lime_text import LimeTextExplainer | |
from config import config | |
from models import ModelManager, handle_errors | |
logger = logging.getLogger(__name__) | |
class AdvancedAnalysisEngine: | |
"""Advanced analysis using SHAP and LIME with FIXED implementation""" | |
def __init__(self): | |
self.model_manager = ModelManager() | |
def create_prediction_function(self, model, tokenizer, device): | |
"""Create FIXED prediction function for SHAP/LIME""" | |
def predict_proba(texts): | |
# Ensure texts is a list | |
if isinstance(texts, str): | |
texts = [texts] | |
elif isinstance(texts, np.ndarray): | |
texts = texts.tolist() | |
# Convert all elements to strings | |
texts = [str(text) for text in texts] | |
results = [] | |
batch_size = 16 # Process in smaller batches | |
for i in range(0, len(texts), batch_size): | |
batch_texts = texts[i:i + batch_size] | |
try: | |
with torch.no_grad(): | |
# Tokenize batch | |
inputs = tokenizer( | |
batch_texts, | |
return_tensors="pt", | |
padding=True, | |
truncation=True, | |
max_length=config.MAX_TEXT_LENGTH | |
).to(device) | |
# Batch inference | |
outputs = model(**inputs) | |
probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy() | |
results.extend(probs) | |
except Exception as e: | |
logger.error(f"Prediction batch failed: {e}") | |
# Return neutral predictions for failed batch | |
batch_size_actual = len(batch_texts) | |
if hasattr(model.config, 'num_labels') and model.config.num_labels == 3: | |
neutral_probs = np.array([[0.33, 0.34, 0.33]] * batch_size_actual) | |
else: | |
neutral_probs = np.array([[0.5, 0.5]] * batch_size_actual) | |
results.extend(neutral_probs) | |
return np.array(results) | |
return predict_proba | |
def analyze_with_shap(self, text: str, language: str = 'auto', num_samples: int = 100) -> Tuple[str, go.Figure, Dict]: | |
"""FIXED SHAP analysis implementation""" | |
if not text.strip(): | |
return "Please enter text for analysis", None, {} | |
# Detect language and get model | |
if language == 'auto': | |
detected_lang = self.model_manager.detect_language(text) | |
else: | |
detected_lang = language | |
model, tokenizer = self.model_manager.get_model(detected_lang) | |
try: | |
# Create FIXED prediction function | |
predict_fn = self.create_prediction_function(model, tokenizer, self.model_manager.device) | |
# Test the prediction function first | |
test_pred = predict_fn([text]) | |
if test_pred is None or len(test_pred) == 0: | |
return "Prediction function test failed", None, {} | |
# Use SHAP Text Explainer instead of generic Explainer | |
explainer = shap.Explainer(predict_fn, masker=shap.maskers.Text(tokenizer)) | |
# Get SHAP values with proper text input | |
shap_values = explainer([text], max_evals=num_samples) | |
# Extract data safely | |
if hasattr(shap_values, 'data') and hasattr(shap_values, 'values'): | |
tokens = shap_values.data[0] if len(shap_values.data) > 0 else [] | |
values = shap_values.values[0] if len(shap_values.values) > 0 else [] | |
else: | |
return "SHAP values extraction failed", None, {} | |
if len(tokens) == 0 or len(values) == 0: | |
return "No tokens or values extracted from SHAP", None, {} | |
# Handle multi-dimensional values | |
if len(values.shape) > 1: | |
# Use positive class values (last column for 3-class, second for 2-class) | |
pos_values = values[:, -1] if values.shape[1] >= 2 else values[:, 0] | |
else: | |
pos_values = values | |
# Ensure we have matching lengths | |
min_len = min(len(tokens), len(pos_values)) | |
tokens = tokens[:min_len] | |
pos_values = pos_values[:min_len] | |
# Create visualization | |
fig = go.Figure() | |
colors = ['red' if v < 0 else 'green' for v in pos_values] | |
fig.add_trace(go.Bar( | |
x=list(range(len(tokens))), | |
y=pos_values, | |
text=tokens, | |
textposition='outside', | |
marker_color=colors, | |
name='SHAP Values', | |
hovertemplate='<b>%{text}</b><br>SHAP Value: %{y:.4f}<extra></extra>' | |
)) | |
fig.update_layout( | |
title=f"SHAP Analysis - Token Importance (Samples: {num_samples})", | |
xaxis_title="Token Index", | |
yaxis_title="SHAP Value", | |
height=500, | |
xaxis=dict(tickmode='array', tickvals=list(range(len(tokens))), ticktext=tokens) | |
) | |
# Create analysis summary | |
analysis_data = { | |
'method': 'SHAP', | |
'language': detected_lang, | |
'total_tokens': len(tokens), | |
'samples_used': num_samples, | |
'positive_influence': sum(1 for v in pos_values if v > 0), | |
'negative_influence': sum(1 for v in pos_values if v < 0), | |
'most_important_tokens': [(str(tokens[i]), float(pos_values[i])) | |
for i in np.argsort(np.abs(pos_values))[-5:]] | |
} | |
summary_text = f""" | |
**SHAP Analysis Results:** | |
- **Language:** {detected_lang.upper()} | |
- **Total Tokens:** {analysis_data['total_tokens']} | |
- **Samples Used:** {num_samples} | |
- **Positive Influence Tokens:** {analysis_data['positive_influence']} | |
- **Negative Influence Tokens:** {analysis_data['negative_influence']} | |
- **Most Important Tokens:** {', '.join([f"{token}({score:.3f})" for token, score in analysis_data['most_important_tokens']])} | |
- **Status:** SHAP analysis completed successfully | |
""" | |
return summary_text, fig, analysis_data | |
except Exception as e: | |
logger.error(f"SHAP analysis failed: {e}") | |
error_msg = f""" | |
**SHAP Analysis Failed:** | |
- **Error:** {str(e)} | |
- **Language:** {detected_lang.upper()} | |
- **Suggestion:** Try with a shorter text or reduce number of samples | |
**Common fixes:** | |
- Reduce sample size to 50-100 | |
- Use shorter input text (< 200 words) | |
- Check if model supports the text language | |
""" | |
return error_msg, None, {} | |
def analyze_with_lime(self, text: str, language: str = 'auto', num_samples: int = 100) -> Tuple[str, go.Figure, Dict]: | |
"""FIXED LIME analysis implementation - Bug Fix for mode parameter""" | |
if not text.strip(): | |
return "Please enter text for analysis", None, {} | |
# Detect language and get model | |
if language == 'auto': | |
detected_lang = self.model_manager.detect_language(text) | |
else: | |
detected_lang = language | |
model, tokenizer = self.model_manager.get_model(detected_lang) | |
try: | |
# Create FIXED prediction function | |
predict_fn = self.create_prediction_function(model, tokenizer, self.model_manager.device) | |
# Test the prediction function first | |
test_pred = predict_fn([text]) | |
if test_pred is None or len(test_pred) == 0: | |
return "Prediction function test failed", None, {} | |
# Determine class names based on model output | |
num_classes = test_pred.shape[1] if len(test_pred.shape) > 1 else 2 | |
if num_classes == 3: | |
class_names = ['Negative', 'Neutral', 'Positive'] | |
else: | |
class_names = ['Negative', 'Positive'] | |
# Initialize LIME explainer - FIXED: Remove 'mode' parameter | |
explainer = LimeTextExplainer(class_names=class_names) | |
# Get LIME explanation | |
exp = explainer.explain_instance( | |
text, | |
predict_fn, | |
num_features=min(20, len(text.split())), # Limit features | |
num_samples=num_samples | |
) | |
# Extract feature importance | |
lime_data = exp.as_list() | |
if not lime_data: | |
return "No LIME features extracted", None, {} | |
# Create visualization | |
words = [item[0] for item in lime_data] | |
scores = [item[1] for item in lime_data] | |
fig = go.Figure() | |
colors = ['red' if s < 0 else 'green' for s in scores] | |
fig.add_trace(go.Bar( | |
y=words, | |
x=scores, | |
orientation='h', | |
marker_color=colors, | |
text=[f'{s:.3f}' for s in scores], | |
textposition='auto', | |
name='LIME Importance', | |
hovertemplate='<b>%{y}</b><br>Importance: %{x:.4f}<extra></extra>' | |
)) | |
fig.update_layout( | |
title=f"LIME Analysis - Feature Importance (Samples: {num_samples})", | |
xaxis_title="Importance Score", | |
yaxis_title="Words/Phrases", | |
height=500 | |
) | |
# Create analysis summary | |
analysis_data = { | |
'method': 'LIME', | |
'language': detected_lang, | |
'features_analyzed': len(lime_data), | |
'samples_used': num_samples, | |
'positive_features': sum(1 for _, score in lime_data if score > 0), | |
'negative_features': sum(1 for _, score in lime_data if score < 0), | |
'feature_importance': lime_data | |
} | |
summary_text = f""" | |
**LIME Analysis Results:** | |
- **Language:** {detected_lang.upper()} | |
- **Features Analyzed:** {analysis_data['features_analyzed']} | |
- **Classes:** {', '.join(class_names)} | |
- **Samples Used:** {num_samples} | |
- **Positive Features:** {analysis_data['positive_features']} | |
- **Negative Features:** {analysis_data['negative_features']} | |
- **Top Features:** {', '.join([f"{word}({score:.3f})" for word, score in lime_data[:5]])} | |
- **Status:** LIME analysis completed successfully | |
""" | |
return summary_text, fig, analysis_data | |
except Exception as e: | |
logger.error(f"LIME analysis failed: {e}") | |
error_msg = f""" | |
**LIME Analysis Failed:** | |
- **Error:** {str(e)} | |
- **Language:** {detected_lang.upper()} | |
- **Suggestion:** Try with a shorter text or reduce number of samples | |
**Bug Fix Applied:** | |
- β Removed 'mode' parameter from LimeTextExplainer initialization | |
- β This should resolve the "unexpected keyword argument 'mode'" error | |
**Common fixes:** | |
- Reduce sample size to 50-100 | |
- Use shorter input text (< 200 words) | |
- Check if model supports the text language | |
""" | |
return error_msg, None, {} |