File size: 12,143 Bytes
c185c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import torch
import numpy as np
import logging
import plotly.graph_objects as go
from typing import Tuple, Dict

# Advanced analysis imports
import shap
import lime
from lime.lime_text import LimeTextExplainer

from config import config
from models import ModelManager, handle_errors

logger = logging.getLogger(__name__)

class AdvancedAnalysisEngine:
    """Advanced analysis using SHAP and LIME with FIXED implementation"""
    
    def __init__(self):
        self.model_manager = ModelManager()
    
    def create_prediction_function(self, model, tokenizer, device):
        """Create FIXED prediction function for SHAP/LIME"""
        def predict_proba(texts):
            # Ensure texts is a list
            if isinstance(texts, str):
                texts = [texts]
            elif isinstance(texts, np.ndarray):
                texts = texts.tolist()
            
            # Convert all elements to strings
            texts = [str(text) for text in texts]
            
            results = []
            batch_size = 16  # Process in smaller batches
            
            for i in range(0, len(texts), batch_size):
                batch_texts = texts[i:i + batch_size]
                
                try:
                    with torch.no_grad():
                        # Tokenize batch
                        inputs = tokenizer(
                            batch_texts, 
                            return_tensors="pt", 
                            padding=True, 
                            truncation=True, 
                            max_length=config.MAX_TEXT_LENGTH
                        ).to(device)
                        
                        # Batch inference
                        outputs = model(**inputs)
                        probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()
                        
                        results.extend(probs)
                        
                except Exception as e:
                    logger.error(f"Prediction batch failed: {e}")
                    # Return neutral predictions for failed batch
                    batch_size_actual = len(batch_texts)
                    if hasattr(model.config, 'num_labels') and model.config.num_labels == 3:
                        neutral_probs = np.array([[0.33, 0.34, 0.33]] * batch_size_actual)
                    else:
                        neutral_probs = np.array([[0.5, 0.5]] * batch_size_actual)
                    results.extend(neutral_probs)
            
            return np.array(results)
        
        return predict_proba
    
    @handle_errors(default_return=("Analysis failed", None, None))
    def analyze_with_shap(self, text: str, language: str = 'auto', num_samples: int = 100) -> Tuple[str, go.Figure, Dict]:
        """FIXED SHAP analysis implementation"""
        if not text.strip():
            return "Please enter text for analysis", None, {}
        
        # Detect language and get model
        if language == 'auto':
            detected_lang = self.model_manager.detect_language(text)
        else:
            detected_lang = language
        
        model, tokenizer = self.model_manager.get_model(detected_lang)
        
        try:
            # Create FIXED prediction function
            predict_fn = self.create_prediction_function(model, tokenizer, self.model_manager.device)
            
            # Test the prediction function first
            test_pred = predict_fn([text])
            if test_pred is None or len(test_pred) == 0:
                return "Prediction function test failed", None, {}
            
            # Use SHAP Text Explainer instead of generic Explainer
            explainer = shap.Explainer(predict_fn, masker=shap.maskers.Text(tokenizer))
            
            # Get SHAP values with proper text input
            shap_values = explainer([text], max_evals=num_samples)
            
            # Extract data safely
            if hasattr(shap_values, 'data') and hasattr(shap_values, 'values'):
                tokens = shap_values.data[0] if len(shap_values.data) > 0 else []
                values = shap_values.values[0] if len(shap_values.values) > 0 else []
            else:
                return "SHAP values extraction failed", None, {}
            
            if len(tokens) == 0 or len(values) == 0:
                return "No tokens or values extracted from SHAP", None, {}
            
            # Handle multi-dimensional values
            if len(values.shape) > 1:
                # Use positive class values (last column for 3-class, second for 2-class)
                pos_values = values[:, -1] if values.shape[1] >= 2 else values[:, 0]
            else:
                pos_values = values
            
            # Ensure we have matching lengths
            min_len = min(len(tokens), len(pos_values))
            tokens = tokens[:min_len]
            pos_values = pos_values[:min_len]
            
            # Create visualization
            fig = go.Figure()
            
            colors = ['red' if v < 0 else 'green' for v in pos_values]
            
            fig.add_trace(go.Bar(
                x=list(range(len(tokens))),
                y=pos_values,
                text=tokens,
                textposition='outside',
                marker_color=colors,
                name='SHAP Values',
                hovertemplate='<b>%{text}</b><br>SHAP Value: %{y:.4f}<extra></extra>'
            ))
            
            fig.update_layout(
                title=f"SHAP Analysis - Token Importance (Samples: {num_samples})",
                xaxis_title="Token Index",
                yaxis_title="SHAP Value",
                height=500,
                xaxis=dict(tickmode='array', tickvals=list(range(len(tokens))), ticktext=tokens)
            )
            
            # Create analysis summary
            analysis_data = {
                'method': 'SHAP',
                'language': detected_lang,
                'total_tokens': len(tokens),
                'samples_used': num_samples,
                'positive_influence': sum(1 for v in pos_values if v > 0),
                'negative_influence': sum(1 for v in pos_values if v < 0),
                'most_important_tokens': [(str(tokens[i]), float(pos_values[i])) 
                                        for i in np.argsort(np.abs(pos_values))[-5:]]
            }
            
            summary_text = f"""
**SHAP Analysis Results:**
- **Language:** {detected_lang.upper()}
- **Total Tokens:** {analysis_data['total_tokens']}
- **Samples Used:** {num_samples}
- **Positive Influence Tokens:** {analysis_data['positive_influence']}
- **Negative Influence Tokens:** {analysis_data['negative_influence']}
- **Most Important Tokens:** {', '.join([f"{token}({score:.3f})" for token, score in analysis_data['most_important_tokens']])}
- **Status:** SHAP analysis completed successfully
            """
            
            return summary_text, fig, analysis_data
            
        except Exception as e:
            logger.error(f"SHAP analysis failed: {e}")
            error_msg = f"""
**SHAP Analysis Failed:**
- **Error:** {str(e)}
- **Language:** {detected_lang.upper()}
- **Suggestion:** Try with a shorter text or reduce number of samples

**Common fixes:**
- Reduce sample size to 50-100
- Use shorter input text (< 200 words)
- Check if model supports the text language
            """
            return error_msg, None, {}
    
    @handle_errors(default_return=("Analysis failed", None, None))
    def analyze_with_lime(self, text: str, language: str = 'auto', num_samples: int = 100) -> Tuple[str, go.Figure, Dict]:
        """FIXED LIME analysis implementation - Bug Fix for mode parameter"""
        if not text.strip():
            return "Please enter text for analysis", None, {}
        
        # Detect language and get model
        if language == 'auto':
            detected_lang = self.model_manager.detect_language(text)
        else:
            detected_lang = language
        
        model, tokenizer = self.model_manager.get_model(detected_lang)
        
        try:
            # Create FIXED prediction function
            predict_fn = self.create_prediction_function(model, tokenizer, self.model_manager.device)
            
            # Test the prediction function first
            test_pred = predict_fn([text])
            if test_pred is None or len(test_pred) == 0:
                return "Prediction function test failed", None, {}
            
            # Determine class names based on model output
            num_classes = test_pred.shape[1] if len(test_pred.shape) > 1 else 2
            if num_classes == 3:
                class_names = ['Negative', 'Neutral', 'Positive']
            else:
                class_names = ['Negative', 'Positive']
            
            # Initialize LIME explainer - FIXED: Remove 'mode' parameter
            explainer = LimeTextExplainer(class_names=class_names)
            
            # Get LIME explanation
            exp = explainer.explain_instance(
                text, 
                predict_fn, 
                num_features=min(20, len(text.split())),  # Limit features
                num_samples=num_samples
            )
            
            # Extract feature importance
            lime_data = exp.as_list()
            
            if not lime_data:
                return "No LIME features extracted", None, {}
            
            # Create visualization
            words = [item[0] for item in lime_data]
            scores = [item[1] for item in lime_data]
            
            fig = go.Figure()
            
            colors = ['red' if s < 0 else 'green' for s in scores]
            
            fig.add_trace(go.Bar(
                y=words,
                x=scores,
                orientation='h',
                marker_color=colors,
                text=[f'{s:.3f}' for s in scores],
                textposition='auto',
                name='LIME Importance',
                hovertemplate='<b>%{y}</b><br>Importance: %{x:.4f}<extra></extra>'
            ))
            
            fig.update_layout(
                title=f"LIME Analysis - Feature Importance (Samples: {num_samples})",
                xaxis_title="Importance Score",
                yaxis_title="Words/Phrases",
                height=500
            )
            
            # Create analysis summary
            analysis_data = {
                'method': 'LIME',
                'language': detected_lang,
                'features_analyzed': len(lime_data),
                'samples_used': num_samples,
                'positive_features': sum(1 for _, score in lime_data if score > 0),
                'negative_features': sum(1 for _, score in lime_data if score < 0),
                'feature_importance': lime_data
            }
            
            summary_text = f"""
**LIME Analysis Results:**
- **Language:** {detected_lang.upper()}
- **Features Analyzed:** {analysis_data['features_analyzed']}
- **Classes:** {', '.join(class_names)}
- **Samples Used:** {num_samples}
- **Positive Features:** {analysis_data['positive_features']}
- **Negative Features:** {analysis_data['negative_features']}
- **Top Features:** {', '.join([f"{word}({score:.3f})" for word, score in lime_data[:5]])}
- **Status:** LIME analysis completed successfully 
            """
            
            return summary_text, fig, analysis_data
            
        except Exception as e:
            logger.error(f"LIME analysis failed: {e}")
            error_msg = f"""
**LIME Analysis Failed:**
- **Error:** {str(e)}
- **Language:** {detected_lang.upper()}
- **Suggestion:** Try with a shorter text or reduce number of samples

**Bug Fix Applied:**
- βœ… Removed 'mode' parameter from LimeTextExplainer initialization
- βœ… This should resolve the "unexpected keyword argument 'mode'" error

**Common fixes:**
- Reduce sample size to 50-100
- Use shorter input text (< 200 words)  
- Check if model supports the text language
            """
            return error_msg, None, {}