ai-exam-coach / app.py
divython's picture
Update app.py
8729582 verified
# Rewriting the app into a Gradio-compatible format
import zipfile
import os
# Directory for Gradio version
gradio_dir = "/mnt/data/exam-ai-gradio"
os.makedirs(gradio_dir, exist_ok=True)
# Gradio-based app.py content
gradio_app_code = '''import gradio as gr
from transformers import pipeline
from googlesearch import search
import requests
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
# Initialize models
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
def summarize_text(text, max_len=512):
if not text.strip():
return "No content to summarize."
try:
summary = summarizer(text, max_length=max_len, min_length=100, do_sample=False)
return summary[0]["summary_text"]
except Exception as e:
return f"Summarization error: {e}"
def search_links(query, max_results=5):
try:
return list(search(query, num_results=max_results))
except Exception as e:
return []
def fetch_page_content(url):
try:
res = requests.get(url, timeout=10)
soup = BeautifulSoup(res.text, "html.parser")
return soup.get_text(separator=" ", strip=True)
except:
return ""
def embed_chunks(chunks):
return embed_model.encode(chunks)
def create_faiss_index(chunks):
embeddings = embed_chunks(chunks)
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(np.array(embeddings))
return index, embeddings
def generate_notes(query):
query_phrases = [
f"{query} exam syllabus 2025",
f"{query} exam dates",
f"{query} preparation resources",
f"{query} important topics"
]
chunks = []
docs = []
for phrase in query_phrases:
urls = search_links(phrase, max_results=3)
for url in urls:
content = fetch_page_content(url)
if len(content.strip()) > 200:
docs.append(content)
for doc in docs:
chunks.extend([doc[i:i+300] for i in range(0, len(doc), 300)])
if not chunks:
return "⚠️ No content could be retrieved. Please try again with a different query."
index, _ = create_faiss_index(chunks)
prompt = f"important topics and notes for {query} exam"
query_vec = embed_chunks([prompt])[0].reshape(1, -1)
D, I = index.search(query_vec, k=15)
selected = [chunks[i] for i in I[0]]
unique_chunks = list(set([c.strip() for c in selected if len(c.strip()) > 200]))
combined = "\\n\\n".join(unique_chunks[:10])
notes = summarize_text(combined)
return notes
iface = gr.Interface(
fn=generate_notes,
inputs=gr.Textbox(lines=1, placeholder="Enter exam name (e.g., AAI ATC)", label="Exam Name"),
outputs=gr.Textbox(lines=15, label="AI-Generated Important Topic Notes"),
title="πŸ“˜ AI Exam Assistant",
description="Enter your exam name and get summarized notes with syllabus, dates, topics and resources."
)
if __name__ == "__main__":
iface.launch()
'''
# Gradio-specific requirements
gradio_requirements = '''gradio
transformers
torch
sentence-transformers
faiss-cpu
googlesearch-python
beautifulsoup4
requests
'''
# Save files
with open(os.path.join(gradio_dir, "app.py"), "w") as f:
f.write(gradio_app_code)
with open(os.path.join(gradio_dir, "requirements.txt"), "w") as f:
f.write(gradio_requirements)
# Create zip
zip_path = "/mnt/data/exam-ai-gradio.zip"
with zipfile.ZipFile(zip_path, "w") as zipf:
for root, _, files in os.walk(gradio_dir):
for file in files:
full_path = os.path.join(root, file)
arcname = os.path.relpath(full_path, gradio_dir)
zipf.write(full_path, arcname=arcname)
zip_path