File size: 3,797 Bytes
8729582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Rewriting the app into a Gradio-compatible format
import zipfile
import os

# Directory for Gradio version
gradio_dir = "/mnt/data/exam-ai-gradio"
os.makedirs(gradio_dir, exist_ok=True)

# Gradio-based app.py content
gradio_app_code = '''import gradio as gr
from transformers import pipeline
from googlesearch import search
import requests
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np

# Initialize models
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
embed_model = SentenceTransformer("all-MiniLM-L6-v2")

def summarize_text(text, max_len=512):
    if not text.strip():
        return "No content to summarize."
    try:
        summary = summarizer(text, max_length=max_len, min_length=100, do_sample=False)
        return summary[0]["summary_text"]
    except Exception as e:
        return f"Summarization error: {e}"

def search_links(query, max_results=5):
    try:
        return list(search(query, num_results=max_results))
    except Exception as e:
        return []

def fetch_page_content(url):
    try:
        res = requests.get(url, timeout=10)
        soup = BeautifulSoup(res.text, "html.parser")
        return soup.get_text(separator=" ", strip=True)
    except:
        return ""

def embed_chunks(chunks):
    return embed_model.encode(chunks)

def create_faiss_index(chunks):
    embeddings = embed_chunks(chunks)
    index = faiss.IndexFlatL2(embeddings.shape[1])
    index.add(np.array(embeddings))
    return index, embeddings

def generate_notes(query):
    query_phrases = [
        f"{query} exam syllabus 2025",
        f"{query} exam dates",
        f"{query} preparation resources",
        f"{query} important topics"
    ]

    chunks = []
    docs = []

    for phrase in query_phrases:
        urls = search_links(phrase, max_results=3)
        for url in urls:
            content = fetch_page_content(url)
            if len(content.strip()) > 200:
                docs.append(content)

    for doc in docs:
        chunks.extend([doc[i:i+300] for i in range(0, len(doc), 300)])

    if not chunks:
        return "โš ๏ธ No content could be retrieved. Please try again with a different query."

    index, _ = create_faiss_index(chunks)
    prompt = f"important topics and notes for {query} exam"
    query_vec = embed_chunks([prompt])[0].reshape(1, -1)
    D, I = index.search(query_vec, k=15)
    selected = [chunks[i] for i in I[0]]
    unique_chunks = list(set([c.strip() for c in selected if len(c.strip()) > 200]))
    combined = "\\n\\n".join(unique_chunks[:10])
    notes = summarize_text(combined)

    return notes

iface = gr.Interface(
    fn=generate_notes,
    inputs=gr.Textbox(lines=1, placeholder="Enter exam name (e.g., AAI ATC)", label="Exam Name"),
    outputs=gr.Textbox(lines=15, label="AI-Generated Important Topic Notes"),
    title="๐Ÿ“˜ AI Exam Assistant",
    description="Enter your exam name and get summarized notes with syllabus, dates, topics and resources."
)

if __name__ == "__main__":
    iface.launch()
'''

# Gradio-specific requirements
gradio_requirements = '''gradio
transformers
torch
sentence-transformers
faiss-cpu
googlesearch-python
beautifulsoup4
requests
'''

# Save files
with open(os.path.join(gradio_dir, "app.py"), "w") as f:
    f.write(gradio_app_code)

with open(os.path.join(gradio_dir, "requirements.txt"), "w") as f:
    f.write(gradio_requirements)

# Create zip
zip_path = "/mnt/data/exam-ai-gradio.zip"
with zipfile.ZipFile(zip_path, "w") as zipf:
    for root, _, files in os.walk(gradio_dir):
        for file in files:
            full_path = os.path.join(root, file)
            arcname = os.path.relpath(full_path, gradio_dir)
            zipf.write(full_path, arcname=arcname)

zip_path