File size: 6,952 Bytes
ec3f4e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca370fd
ec3f4e3
 
 
 
 
 
ca370fd
 
ec3f4e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca370fd
 
ec3f4e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca370fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec3f4e3
52289fb
 
 
 
 
 
 
441f78e
 
 
 
 
52289fb
 
 
ec3f4e3
 
 
 
52289fb
ec3f4e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import gradio as gr
from utils.pipeline_utils import determine_pipe_loading_memory
from utils.llm_utils import LLMCodeOptimizer
from prompts import system_prompt, generate_prompt
from utils.hardware_utils import categorize_ram, categorize_vram

LLM_CACHE = {}


def get_output_code(
    repo_id,
    gemini_model_to_use,
    disable_bf16,
    enable_lossy,
    system_ram,
    gpu_vram,
    torch_compile_friendly,
    fp8_friendly,
):
    loading_mem_out = determine_pipe_loading_memory(repo_id, None, disable_bf16)
    load_memory = loading_mem_out["total_loading_memory_gb"]
    ram_category = categorize_ram(system_ram)
    vram_category = categorize_vram(gpu_vram)

    print(f"RAM Category: {ram_category}")
    print(f"VRAM Category: {vram_category}")

    if gemini_model_to_use not in LLM_CACHE:
        print(f"Initializing new LLM instance for: {gemini_model_to_use}")
        # If not, create it and add it to the cache
        LLM_CACHE[gemini_model_to_use] = LLMCodeOptimizer(model_name=gemini_model_to_use, system_prompt=system_prompt)

    llm = LLM_CACHE[gemini_model_to_use]
    current_generate_prompt = generate_prompt.format(
        ckpt_id=repo_id,
        pipeline_loading_memory=load_memory,
        available_system_ram=system_ram,
        available_gpu_vram=gpu_vram,
        enable_lossy_outputs=enable_lossy,
        is_fp8_supported=fp8_friendly,
        enable_torch_compile=torch_compile_friendly,
    )
    generated_prompt = current_generate_prompt
    llm_output = llm(current_generate_prompt)
    return llm_output, generated_prompt


# --- Gradio UI Definition ---
with gr.Blocks() as demo:
    gr.Markdown(
        """
        # 🧨 Generate Diffusers Inference code snippet tailored to your machine
        Enter a Hugging Face Hub `repo_id` and your system specs to get started for inference.
        This tool uses [Gemini](https://ai.google.dev/gemini-api/docs/models) to generate the code based on your settings. This is based on
        [sayakpaul/auto-diffusers-docs](https://github.com/sayakpaul/auto-diffusers-docs/).
        """,
        elem_id="col-container"
    )

    with gr.Row():
        with gr.Column(scale=3):
            repo_id = gr.Textbox(
                label="Hugging Face Repo ID",
                placeholder="e.g., black-forest-labs/FLUX.1-dev",
                info="The model repository you want to analyze.",
                value="black-forest-labs/FLUX.1-dev",
            )
            gemini_model_to_use = gr.Dropdown(
                ["gemini-2.5-flash", "gemini-2.5-pro"],
                value="gemini-2.5-flash",
                label="Gemini Model",
                info="Select the model to generate the analysis.",
            )
            with gr.Row():
                system_ram = gr.Number(label="Free System RAM (GB)", value=20)
                gpu_vram = gr.Number(label="Free GPU VRAM (GB)", value=8)

            with gr.Row():
                disable_bf16 = gr.Checkbox(
                    label="Disable BF16 (Use FP32)",
                    value=False,
                    info="Calculate using 32-bit precision instead of 16-bit.",
                )
                enable_lossy = gr.Checkbox(
                    label="Allow Lossy Quantization", value=False, info="Consider 8-bit/4-bit quantization."
                )
                torch_compile_friendly = gr.Checkbox(
                    label="torch.compile() friendly", value=False, info="Model is compatible with torch.compile."
                )
                fp8_friendly = gr.Checkbox(
                    label="fp8 friendly", value=False, info="Model and hardware support FP8 precision."
                )

        with gr.Column(scale=1):
            submit_btn = gr.Button("Estimate Memory ☁", variant="primary", scale=1)
    
    # --- Start of New Code Block ---
    all_inputs = [
        repo_id,
        gemini_model_to_use,
        disable_bf16,
        enable_lossy,
        system_ram,
        gpu_vram,
        torch_compile_friendly,
        fp8_friendly,
    ]

    with gr.Accordion("Examples (Click to expand)", open=False):
        gr.Examples(
            examples=[
                [
                    "stabilityai/stable-diffusion-xl-base-1.0",
                    "gemini-2.5-pro",
                    False,
                    False,
                    64,
                    24,
                    True,
                    True,
                ],
                [
                    "Wan-AI/Wan2.1-VACE-1.3B-diffusers",
                    "gemini-2.5-flash",
                    False,
                    True,
                    16,
                    8,
                    False,
                    False,
                ],
                [
                    "stabilityai/stable-diffusion-3-medium-diffusers",
                    "gemini-2.5-pro",
                    False,
                    False,
                    32,
                    16,
                    True,
                    False,
                ],
            ],
            inputs=all_inputs,
            label="Examples (Click to try)",
        )
    # --- End of New Code Block ---

    with gr.Accordion("💡 Tips", open=False):
        gr.Markdown(
            """
            - Try changing to the model from Flash to Pro if the results are bad.
            - Try to be as specific as possible about your local machine.
            - As a rule of thumb, GPUs from RTX 4090 and later, are generally good for using `torch.compile()`.
            - To leverage FP8, the GPU needs to have a compute capability of at least 8.9.
            - Check out the following docs for optimization in Diffusers:
                * [Memory](https://huggingface.co/docs/diffusers/main/en/optimization/memory)
                * [Caching](https://huggingface.co/docs/diffusers/main/en/optimization/cache)
                * [Inference acceleration](https://huggingface.co/docs/diffusers/main/en/optimization/fp16)
                * [PyTorch blog](https://pytorch.org/blog/presenting-flux-fast-making-flux-go-brrr-on-h100s/)
            """
        )

    with gr.Accordion("Generated LLM Prompt (for debugging)", open=False):
        prompt_output = gr.Textbox(label="Prompt", show_copy_button=True, lines=10, interactive=False)

    gr.Markdown("---")
    gr.Markdown("### Generated Code")

    output_markdown = gr.Markdown(label="LLM Output", value="*Your results will appear here...*")

    gr.Markdown(
        """
        ---
        > ⛔️ **Disclaimer:** Large Language Models (LLMs) can make mistakes. The information provided
        > is an estimate and should be verified. Always test the model on your target hardware to confirm
        > actual memory requirements.
        """
    )

    # --- Event Handling ---
    submit_btn.click(fn=get_output_code, inputs=all_inputs, outputs=[output_markdown, prompt_output])


if __name__ == "__main__":
    demo.launch()