Sync from GitHub
Browse files- app.py +56 -14
- prompts.py +2 -1
- utils/pipeline_utils.py +1 -1
app.py
CHANGED
@@ -46,14 +46,15 @@ def get_output_code(
|
|
46 |
|
47 |
|
48 |
# --- Gradio UI Definition ---
|
49 |
-
with gr.Blocks(
|
50 |
gr.Markdown(
|
51 |
"""
|
52 |
# 🧨 Generate Diffusers Inference code snippet tailored to your machine
|
53 |
Enter a Hugging Face Hub `repo_id` and your system specs to get started for inference.
|
54 |
This tool uses [Gemini](https://ai.google.dev/gemini-api/docs/models) to generate the code based on your settings. This is based on
|
55 |
[sayakpaul/auto-diffusers-docs](https://github.com/sayakpaul/auto-diffusers-docs/).
|
56 |
-
"""
|
|
|
57 |
)
|
58 |
|
59 |
with gr.Row():
|
@@ -71,8 +72,8 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
71 |
info="Select the model to generate the analysis.",
|
72 |
)
|
73 |
with gr.Row():
|
74 |
-
system_ram = gr.Number(label="System RAM (GB)", value=20)
|
75 |
-
gpu_vram = gr.Number(label="GPU VRAM (GB)", value=8)
|
76 |
|
77 |
with gr.Row():
|
78 |
disable_bf16 = gr.Checkbox(
|
@@ -92,6 +93,57 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
92 |
|
93 |
with gr.Column(scale=1):
|
94 |
submit_btn = gr.Button("Estimate Memory ☁", variant="primary", scale=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
with gr.Accordion("💡 Tips", open=False):
|
97 |
gr.Markdown(
|
@@ -126,16 +178,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
126 |
)
|
127 |
|
128 |
# --- Event Handling ---
|
129 |
-
all_inputs = [
|
130 |
-
repo_id,
|
131 |
-
gemini_model_to_use,
|
132 |
-
disable_bf16,
|
133 |
-
enable_lossy,
|
134 |
-
system_ram,
|
135 |
-
gpu_vram,
|
136 |
-
torch_compile_friendly,
|
137 |
-
fp8_friendly,
|
138 |
-
]
|
139 |
submit_btn.click(fn=get_output_code, inputs=all_inputs, outputs=[output_markdown, prompt_output])
|
140 |
|
141 |
|
|
|
46 |
|
47 |
|
48 |
# --- Gradio UI Definition ---
|
49 |
+
with gr.Blocks() as demo:
|
50 |
gr.Markdown(
|
51 |
"""
|
52 |
# 🧨 Generate Diffusers Inference code snippet tailored to your machine
|
53 |
Enter a Hugging Face Hub `repo_id` and your system specs to get started for inference.
|
54 |
This tool uses [Gemini](https://ai.google.dev/gemini-api/docs/models) to generate the code based on your settings. This is based on
|
55 |
[sayakpaul/auto-diffusers-docs](https://github.com/sayakpaul/auto-diffusers-docs/).
|
56 |
+
""",
|
57 |
+
elem_id="col-container"
|
58 |
)
|
59 |
|
60 |
with gr.Row():
|
|
|
72 |
info="Select the model to generate the analysis.",
|
73 |
)
|
74 |
with gr.Row():
|
75 |
+
system_ram = gr.Number(label="Free System RAM (GB)", value=20)
|
76 |
+
gpu_vram = gr.Number(label="Free GPU VRAM (GB)", value=8)
|
77 |
|
78 |
with gr.Row():
|
79 |
disable_bf16 = gr.Checkbox(
|
|
|
93 |
|
94 |
with gr.Column(scale=1):
|
95 |
submit_btn = gr.Button("Estimate Memory ☁", variant="primary", scale=1)
|
96 |
+
|
97 |
+
# --- Start of New Code Block ---
|
98 |
+
all_inputs = [
|
99 |
+
repo_id,
|
100 |
+
gemini_model_to_use,
|
101 |
+
disable_bf16,
|
102 |
+
enable_lossy,
|
103 |
+
system_ram,
|
104 |
+
gpu_vram,
|
105 |
+
torch_compile_friendly,
|
106 |
+
fp8_friendly,
|
107 |
+
]
|
108 |
+
|
109 |
+
with gr.Accordion("Examples (Click to expand)", open=False):
|
110 |
+
gr.Examples(
|
111 |
+
examples=[
|
112 |
+
[
|
113 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
114 |
+
"gemini-2.5-pro",
|
115 |
+
False,
|
116 |
+
False,
|
117 |
+
64,
|
118 |
+
24,
|
119 |
+
True,
|
120 |
+
True,
|
121 |
+
],
|
122 |
+
[
|
123 |
+
"Wan-AI/Wan2.1-VACE-1.3B-diffusers",
|
124 |
+
"gemini-2.5-flash",
|
125 |
+
False,
|
126 |
+
True,
|
127 |
+
16,
|
128 |
+
8,
|
129 |
+
False,
|
130 |
+
False,
|
131 |
+
],
|
132 |
+
[
|
133 |
+
"stabilityai/stable-diffusion-3-medium-diffusers",
|
134 |
+
"gemini-2.5-pro",
|
135 |
+
False,
|
136 |
+
False,
|
137 |
+
32,
|
138 |
+
16,
|
139 |
+
True,
|
140 |
+
False,
|
141 |
+
],
|
142 |
+
],
|
143 |
+
inputs=all_inputs,
|
144 |
+
label="Examples (Click to try)",
|
145 |
+
)
|
146 |
+
# --- End of New Code Block ---
|
147 |
|
148 |
with gr.Accordion("💡 Tips", open=False):
|
149 |
gr.Markdown(
|
|
|
178 |
)
|
179 |
|
180 |
# --- Event Handling ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
submit_btn.click(fn=get_output_code, inputs=all_inputs, outputs=[output_markdown, prompt_output])
|
182 |
|
183 |
|
prompts.py
CHANGED
@@ -163,7 +163,8 @@ pipe.transformer.compile(fullgraph=True)
|
|
163 |
|
164 |
* When the available VRAM > pipeline loading memory, you should suggest using `pipe = pipe.to("cuda")`.
|
165 |
* If the user prefers not to use quantization and further reduce memory, then suggest using:
|
166 |
-
`pipe.transformer.enable_layerwise_casting(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16)`.
|
|
|
167 |
* Do NOT add any extra imports or lines of code that will not be used.
|
168 |
* Do NOT try to be too creative about combining the optimization techniques laid out above.
|
169 |
* Do NOT add extra arguments to the `pipe` call other than the `prompt`.
|
|
|
163 |
|
164 |
* When the available VRAM > pipeline loading memory, you should suggest using `pipe = pipe.to("cuda")`.
|
165 |
* If the user prefers not to use quantization and further reduce memory, then suggest using:
|
166 |
+
`pipe.transformer.enable_layerwise_casting(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16)`. Note
|
167 |
+
that this is different from using FP8. In FP8, we use quantization like shown above.
|
168 |
* Do NOT add any extra imports or lines of code that will not be used.
|
169 |
* Do NOT try to be too creative about combining the optimization techniques laid out above.
|
170 |
* Do NOT add extra arguments to the `pipe` call other than the `prompt`.
|
utils/pipeline_utils.py
CHANGED
@@ -12,7 +12,7 @@ import requests
|
|
12 |
import struct
|
13 |
from huggingface_hub import hf_hub_url
|
14 |
|
15 |
-
DTYPE_MAP = {"FP32": torch.float32, "
|
16 |
|
17 |
|
18 |
# https://huggingface.co/docs/safetensors/v0.3.2/metadata_parsing#python
|
|
|
12 |
import struct
|
13 |
from huggingface_hub import hf_hub_url
|
14 |
|
15 |
+
DTYPE_MAP = {"FP32": torch.float32, "F16": torch.float16, "BF16": torch.bfloat16}
|
16 |
|
17 |
|
18 |
# https://huggingface.co/docs/safetensors/v0.3.2/metadata_parsing#python
|