mlx-my-repo / app.py
dicksonhk's picture
Update app.py
344e270 verified
import os
import tempfile
import importlib.util
from enum import Enum
from contextlib import contextmanager, AbstractContextManager
from functools import wraps
os.environ["HF_HUB_CACHE"] = "cache"
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr
from huggingface_hub import HfApi
from huggingface_hub import whoami
from huggingface_hub import ModelCard
from huggingface_hub import scan_cache_dir
from huggingface_hub import logging
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
from textwrap import dedent
from typing import (
Any,
Callable,
Dict,
Optional,
Tuple,
Type,
Union,
NamedTuple,
)
import mlx.nn as nn
import mlx_lm
from mlx_lm.utils import (
load_config,
get_model_path,
)
import mlx_vlm
# mlx-lm/mlx_lm/utils.py
MODEL_REMAPPING_MLX_LM = {
"mistral": "llama", # mistral is compatible with llama
"phi-msft": "phixtral",
"falcon_mamba": "mamba",
}
# mlx-vlm/mlx_vlm/utils.py
MODEL_REMAPPING_MLX_VLM = {
"llava-qwen2": "llava_bunny",
"bunny-llama": "llava_bunny",
}
MODEL_REMAPPING = {
**MODEL_REMAPPING_MLX_LM,
**MODEL_REMAPPING_MLX_VLM,
}
HF_TOKEN = os.environ.get("HF_TOKEN")
# I'm not sure if we need to add more stuff here
QUANT_PARAMS = {
"Q2": 2,
"Q3": 3,
"Q4": 4,
"Q6": 6,
"Q8": 8,
}
class RuntimeInfo(NamedTuple):
name: str
package: str
version: str
convert_fn: Callable
usage_example: Callable[[str], str]
format: str = "MLX"
class Runtime(RuntimeInfo, Enum):
MLX_LM = RuntimeInfo(
name="MLX LM",
package="mlx-lm",
version=mlx_lm.__version__,
convert_fn=mlx_lm.convert,
usage_example=lambda upload_repo: dedent(
f"""
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("{upload_repo}")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{{"role": "user", "content": prompt}}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
"""
)
)
MLX_VLM = RuntimeInfo(
name="MLX-VLM",
package="mlx-vlm",
version=mlx_vlm.__version__,
convert_fn=mlx_vlm.convert,
usage_example=lambda upload_repo: dedent(
f"""
```bash
pip install -U mlx-vlm
```
```bash
python -m mlx_vlm.generate --model {upload_repo} --max-tokens 100 --temp 0.0 --prompt "Describe this image." --image <path_to_image>
```
"""
)
)
def list_files_in_folder(folder_path):
# List all files and directories in the specified folder
all_items = os.listdir(folder_path)
# Filter out only files
files = [item for item in all_items if os.path.isfile(os.path.join(folder_path, item))]
return files
def clear_hf_cache_space():
scan = scan_cache_dir()
to_delete = []
for repo in scan.repos:
if repo.repo_type == "model":
to_delete.extend([rev.commit_hash for rev in repo.revisions])
scan.delete_revisions(*to_delete).execute()
print("Cache has been cleared")
def upload_to_hub(path, upload_repo, hf_path, oauth_token, runtime: Runtime):
card = ModelCard.load(hf_path, token=oauth_token.token)
card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx", "mlx-my-repo"]
card.data.base_model = hf_path
card.text = dedent(
f"""
# {upload_repo}
The Model [{upload_repo}](https://huggingface.co/{upload_repo}) was converted to {runtime.format} format from [{hf_path}](https://huggingface.co/{hf_path}) using {runtime.package} version **{runtime.version}**.
"""
) + runtime.usage_example(upload_repo)
card.save(os.path.join(path, "README.md"))
logging.set_verbosity_info()
api = HfApi(token=oauth_token.token)
api.create_repo(repo_id=upload_repo, exist_ok=True)
files = list_files_in_folder(path)
print(files)
for file in files:
file_path = os.path.join(path, file)
print(f"Uploading file: {file_path}")
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=file,
repo_id=upload_repo,
)
print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.")
@contextmanager
def patch_strict_default_methods_ctx() -> AbstractContextManager[Callable[[Any, str], None]]:
"""
Context manager to temporarily set the default value of the 'strict' arg to `False`
for specified class methods.
Does not affect explict `strict=True`.
(e.g. `def update(self, parameters: dict, strict: bool = True)`
becomes `def update(self, parameters: dict, strict: bool = False)`)
Typical usage:
with patch_strict_default_methods_ctx() as patch:
patch(Foo, "bar")
patch(Foo, "baz")
patch(Bar, "foo")
# Patched methods active here
# Originals restored here
"""
originals: Dict[Tuple[Type[Any], str], Callable] = {}
def patch(cls: Any, method_name: str):
method = getattr(cls, method_name)
originals[(cls, method_name)] = method
@wraps(method)
def wrapper(self, *args, strict=False, **kwargs):
return method(self, *args, strict=strict, **kwargs)
setattr(cls, method_name, wrapper)
try:
yield patch
finally:
# Restore all patched methods
for (cls, method_name), original in originals.items():
setattr(cls, method_name, original)
originals.clear()
def convert(
hf_path: str,
mlx_path: str = "mlx_model",
quantize: bool = False,
q_group_size: int = 64,
q_bits: int = 4,
dtype: Optional[str] = None,
upload_repo: str = None,
revision: Optional[str] = None,
dequantize: bool = False,
quant_predicate: Optional[
Union[Callable[[str, nn.Module, dict], Union[bool, dict]], str]
] = None, # mlx-lm
skip_vision: bool = False, # mlx-vlm
trust_remote_code: bool = True, # mlx-vlm
) -> Runtime :
model_path = get_model_path(hf_path, revision=revision)
def mlx_lm_convert():
mlx_lm.convert(
hf_path=hf_path,
mlx_path=mlx_path,
quantize=quantize,
q_group_size=q_group_size,
q_bits=q_bits,
dtype=dtype,
upload_repo=upload_repo,
revision=revision,
dequantize=dequantize,
quant_predicate=quant_predicate,
)
def mlx_vlm_convert():
def _mlx_vlm_convert():
mlx_vlm.convert(
#hf_path=new_model_path,
hf_path=hf_path,
mlx_path=mlx_path,
quantize=quantize,
q_group_size=q_group_size,
q_bits=q_bits,
dtype=dtype,
upload_repo=upload_repo,
revision=revision,
dequantize=dequantize,
skip_vision=skip_vision,
trust_remote_code=trust_remote_code,
)
try:
_mlx_vlm_convert()
except ValueError as e:
print(e)
print(f"Error converting, try again with strict = False")
with patch_strict_default_methods_ctx() as patch:
import mlx.nn as n
patch(nn.Module, "load_weights")
patch(nn.Module, "update")
patch(nn.Module, "update_modules")
# patched strict=False by default, try again
_mlx_vlm_convert()
config = load_config(model_path)
model_type = config["model_type"]
model_type = MODEL_REMAPPING.get(model_type, model_type)
is_lm = importlib.util.find_spec(f"mlx_lm.models.{model_type}") is not None
is_vlm = importlib.util.find_spec(f"mlx_vlm.models.{model_type}") is not None
if is_lm and (not is_vlm):
mlx_lm_convert()
runtime = Runtime.MLX_LM
elif is_vlm and (not is_lm):
mlx_vlm_convert()
runtime = Runtime.MLX_VLM
else:
# fallback in-case our MODEL_REMAPPING is outdated
try:
mlx_vlm_convert()
runtime = Runtime.MLX_VLM
except Exception as e:
mlx_lm_convert()
runtime = Runtime.MLX_LM
return runtime
def process_model(model_id, q_method, oauth_token: gr.OAuthToken | None):
if oauth_token.token is None:
raise ValueError("You must be logged in to use MLX-my-repo")
model_name = model_id.split('/')[-1]
username = whoami(oauth_token.token)["name"]
try:
if q_method == "FP16":
upload_repo = f"{username}/{model_name}-mlx-fp16"
with tempfile.TemporaryDirectory(dir="converted") as tmpdir:
# The target directory must not exist
mlx_path = os.path.join(tmpdir, "mlx")
runtime = convert(model_id, mlx_path=mlx_path, quantize=False, dtype="float16")
print("Conversion done")
upload_to_hub(path=mlx_path, upload_repo=upload_repo, hf_path=model_id, oauth_token=oauth_token, runtime=runtime)
print("Upload done")
else:
q_bits = QUANT_PARAMS[q_method]
upload_repo = f"{username}/{model_name}-mlx-{q_bits}Bit"
with tempfile.TemporaryDirectory(dir="converted") as tmpdir:
# The target directory must not exist
mlx_path = os.path.join(tmpdir, "mlx")
runtime = convert(model_id, mlx_path=mlx_path, quantize=True, q_bits=q_bits)
print("Conversion done")
upload_to_hub(path=mlx_path, upload_repo=upload_repo, hf_path=model_id, oauth_token=oauth_token, runtime=runtime)
print("Upload done")
return (
f'Find your repo <a href="https://hf.co/{upload_repo}" target="_blank" style="text-decoration:underline">here</a>',
"llama.png",
)
except Exception as e:
return (f"Error: {e}", "error.png")
finally:
clear_hf_cache_space()
print("Folder cleaned up successfully!")
css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown("You must be logged in to use MLX-my-repo.")
gr.LoginButton(min_width=250)
model_id = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on Huggingface",
search_type="model",
)
q_method = gr.Dropdown(
["FP16", "Q2", "Q3", "Q4", "Q6", "Q8"],
label="Conversion Method",
info="MLX conversion type (FP16 for float16, Q2–Q8 for quantized models)",
value="Q4",
filterable=False,
visible=True
)
iface = gr.Interface(
fn=process_model,
inputs=[
model_id,
q_method,
],
outputs=[
gr.Markdown(label="output"),
gr.Image(show_label=False),
],
title="Create your own MLX Models, blazingly fast ⚡!",
description="The space takes an HF repo as an input, converts it to MLX format (FP16 or quantized), and creates a Public/Private repo under your HF user namespace.",
api_name=False
)
def restart_space():
HfApi().restart_space(repo_id="reach-vb/mlx-my-repo", token=HF_TOKEN, factory_reboot=True)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()
# Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)