import os import tempfile import importlib.util from enum import Enum from contextlib import contextmanager, AbstractContextManager from functools import wraps os.environ["HF_HUB_CACHE"] = "cache" os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" import gradio as gr from huggingface_hub import HfApi from huggingface_hub import whoami from huggingface_hub import ModelCard from huggingface_hub import scan_cache_dir from huggingface_hub import logging from gradio_huggingfacehub_search import HuggingfaceHubSearch from apscheduler.schedulers.background import BackgroundScheduler from textwrap import dedent from typing import ( Any, Callable, Dict, Optional, Tuple, Type, Union, NamedTuple, ) import mlx.nn as nn import mlx_lm from mlx_lm.utils import ( load_config, get_model_path, ) import mlx_vlm # mlx-lm/mlx_lm/utils.py MODEL_REMAPPING_MLX_LM = { "mistral": "llama", # mistral is compatible with llama "phi-msft": "phixtral", "falcon_mamba": "mamba", } # mlx-vlm/mlx_vlm/utils.py MODEL_REMAPPING_MLX_VLM = { "llava-qwen2": "llava_bunny", "bunny-llama": "llava_bunny", } MODEL_REMAPPING = { **MODEL_REMAPPING_MLX_LM, **MODEL_REMAPPING_MLX_VLM, } HF_TOKEN = os.environ.get("HF_TOKEN") # I'm not sure if we need to add more stuff here QUANT_PARAMS = { "Q2": 2, "Q3": 3, "Q4": 4, "Q6": 6, "Q8": 8, } class RuntimeInfo(NamedTuple): name: str package: str version: str convert_fn: Callable usage_example: Callable[[str], str] format: str = "MLX" class Runtime(RuntimeInfo, Enum): MLX_LM = RuntimeInfo( name="MLX LM", package="mlx-lm", version=mlx_lm.__version__, convert_fn=mlx_lm.convert, usage_example=lambda upload_repo: dedent( f""" ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("{upload_repo}") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{{"role": "user", "content": prompt}}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ``` """ ) ) MLX_VLM = RuntimeInfo( name="MLX-VLM", package="mlx-vlm", version=mlx_vlm.__version__, convert_fn=mlx_vlm.convert, usage_example=lambda upload_repo: dedent( f""" ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model {upload_repo} --max-tokens 100 --temp 0.0 --prompt "Describe this image." --image ``` """ ) ) def list_files_in_folder(folder_path): # List all files and directories in the specified folder all_items = os.listdir(folder_path) # Filter out only files files = [item for item in all_items if os.path.isfile(os.path.join(folder_path, item))] return files def clear_hf_cache_space(): scan = scan_cache_dir() to_delete = [] for repo in scan.repos: if repo.repo_type == "model": to_delete.extend([rev.commit_hash for rev in repo.revisions]) scan.delete_revisions(*to_delete).execute() print("Cache has been cleared") def upload_to_hub(path, upload_repo, hf_path, oauth_token, runtime: Runtime): card = ModelCard.load(hf_path, token=oauth_token.token) card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx", "mlx-my-repo"] card.data.base_model = hf_path card.text = dedent( f""" # {upload_repo} The Model [{upload_repo}](https://huggingface.co/{upload_repo}) was converted to {runtime.format} format from [{hf_path}](https://huggingface.co/{hf_path}) using {runtime.package} version **{runtime.version}**. """ ) + runtime.usage_example(upload_repo) card.save(os.path.join(path, "README.md")) logging.set_verbosity_info() api = HfApi(token=oauth_token.token) api.create_repo(repo_id=upload_repo, exist_ok=True) files = list_files_in_folder(path) print(files) for file in files: file_path = os.path.join(path, file) print(f"Uploading file: {file_path}") api.upload_file( path_or_fileobj=file_path, path_in_repo=file, repo_id=upload_repo, ) print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.") @contextmanager def patch_strict_default_methods_ctx() -> AbstractContextManager[Callable[[Any, str], None]]: """ Context manager to temporarily set the default value of the 'strict' arg to `False` for specified class methods. Does not affect explict `strict=True`. (e.g. `def update(self, parameters: dict, strict: bool = True)` becomes `def update(self, parameters: dict, strict: bool = False)`) Typical usage: with patch_strict_default_methods_ctx() as patch: patch(Foo, "bar") patch(Foo, "baz") patch(Bar, "foo") # Patched methods active here # Originals restored here """ originals: Dict[Tuple[Type[Any], str], Callable] = {} def patch(cls: Any, method_name: str): method = getattr(cls, method_name) originals[(cls, method_name)] = method @wraps(method) def wrapper(self, *args, strict=False, **kwargs): return method(self, *args, strict=strict, **kwargs) setattr(cls, method_name, wrapper) try: yield patch finally: # Restore all patched methods for (cls, method_name), original in originals.items(): setattr(cls, method_name, original) originals.clear() def convert( hf_path: str, mlx_path: str = "mlx_model", quantize: bool = False, q_group_size: int = 64, q_bits: int = 4, dtype: Optional[str] = None, upload_repo: str = None, revision: Optional[str] = None, dequantize: bool = False, quant_predicate: Optional[ Union[Callable[[str, nn.Module, dict], Union[bool, dict]], str] ] = None, # mlx-lm skip_vision: bool = False, # mlx-vlm trust_remote_code: bool = True, # mlx-vlm ) -> Runtime : model_path = get_model_path(hf_path, revision=revision) def mlx_lm_convert(): mlx_lm.convert( hf_path=hf_path, mlx_path=mlx_path, quantize=quantize, q_group_size=q_group_size, q_bits=q_bits, dtype=dtype, upload_repo=upload_repo, revision=revision, dequantize=dequantize, quant_predicate=quant_predicate, ) def mlx_vlm_convert(): def _mlx_vlm_convert(): mlx_vlm.convert( #hf_path=new_model_path, hf_path=hf_path, mlx_path=mlx_path, quantize=quantize, q_group_size=q_group_size, q_bits=q_bits, dtype=dtype, upload_repo=upload_repo, revision=revision, dequantize=dequantize, skip_vision=skip_vision, trust_remote_code=trust_remote_code, ) try: _mlx_vlm_convert() except ValueError as e: print(e) print(f"Error converting, try again with strict = False") with patch_strict_default_methods_ctx() as patch: import mlx.nn as n patch(nn.Module, "load_weights") patch(nn.Module, "update") patch(nn.Module, "update_modules") # patched strict=False by default, try again _mlx_vlm_convert() config = load_config(model_path) model_type = config["model_type"] model_type = MODEL_REMAPPING.get(model_type, model_type) is_lm = importlib.util.find_spec(f"mlx_lm.models.{model_type}") is not None is_vlm = importlib.util.find_spec(f"mlx_vlm.models.{model_type}") is not None if is_lm and (not is_vlm): mlx_lm_convert() runtime = Runtime.MLX_LM elif is_vlm and (not is_lm): mlx_vlm_convert() runtime = Runtime.MLX_VLM else: # fallback in-case our MODEL_REMAPPING is outdated try: mlx_vlm_convert() runtime = Runtime.MLX_VLM except Exception as e: mlx_lm_convert() runtime = Runtime.MLX_LM return runtime def process_model(model_id, q_method, oauth_token: gr.OAuthToken | None): if oauth_token.token is None: raise ValueError("You must be logged in to use MLX-my-repo") model_name = model_id.split('/')[-1] username = whoami(oauth_token.token)["name"] try: if q_method == "FP16": upload_repo = f"{username}/{model_name}-mlx-fp16" with tempfile.TemporaryDirectory(dir="converted") as tmpdir: # The target directory must not exist mlx_path = os.path.join(tmpdir, "mlx") runtime = convert(model_id, mlx_path=mlx_path, quantize=False, dtype="float16") print("Conversion done") upload_to_hub(path=mlx_path, upload_repo=upload_repo, hf_path=model_id, oauth_token=oauth_token, runtime=runtime) print("Upload done") else: q_bits = QUANT_PARAMS[q_method] upload_repo = f"{username}/{model_name}-mlx-{q_bits}Bit" with tempfile.TemporaryDirectory(dir="converted") as tmpdir: # The target directory must not exist mlx_path = os.path.join(tmpdir, "mlx") runtime = convert(model_id, mlx_path=mlx_path, quantize=True, q_bits=q_bits) print("Conversion done") upload_to_hub(path=mlx_path, upload_repo=upload_repo, hf_path=model_id, oauth_token=oauth_token, runtime=runtime) print("Upload done") return ( f'Find your repo here', "llama.png", ) except Exception as e: return (f"Error: {e}", "error.png") finally: clear_hf_cache_space() print("Folder cleaned up successfully!") css="""/* Custom CSS to allow scrolling */ .gradio-container {overflow-y: auto;} """ # Create Gradio interface with gr.Blocks(css=css) as demo: gr.Markdown("You must be logged in to use MLX-my-repo.") gr.LoginButton(min_width=250) model_id = HuggingfaceHubSearch( label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model", ) q_method = gr.Dropdown( ["FP16", "Q2", "Q3", "Q4", "Q6", "Q8"], label="Conversion Method", info="MLX conversion type (FP16 for float16, Q2–Q8 for quantized models)", value="Q4", filterable=False, visible=True ) iface = gr.Interface( fn=process_model, inputs=[ model_id, q_method, ], outputs=[ gr.Markdown(label="output"), gr.Image(show_label=False), ], title="Create your own MLX Models, blazingly fast ⚡!", description="The space takes an HF repo as an input, converts it to MLX format (FP16 or quantized), and creates a Public/Private repo under your HF user namespace.", api_name=False ) def restart_space(): HfApi().restart_space(repo_id="reach-vb/mlx-my-repo", token=HF_TOKEN, factory_reboot=True) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=21600) scheduler.start() # Launch the interface demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)