Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,439 +1,454 @@
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Here's the code without line numbers:
|
2 |
+
|
3 |
+
```python
|
4 |
import streamlit as st
|
5 |
+
import plotly.express as px
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
import pandas as pd
|
8 |
+
import numpy as np
|
9 |
+
from datetime import datetime, timedelta
|
10 |
+
from typing import Dict, List, Any
|
11 |
+
import streamlit as st
|
12 |
+
import streamlit.components.v1 as components
|
13 |
+
|
14 |
+
# --- Data Processing Class ---
|
15 |
+
class DataProcessor:
|
16 |
+
def __init__(self):
|
17 |
+
self.data = None
|
18 |
+
self.numeric_columns = []
|
19 |
+
self.categorical_columns = []
|
20 |
+
|
21 |
+
self.date_columns = []
|
22 |
+
|
23 |
+
def load_data(self, file) -> bool:
|
24 |
+
try:
|
25 |
+
self.data = pd.read_csv(file)
|
26 |
+
self._classify_columns()
|
27 |
+
return True
|
28 |
+
except Exception as e:
|
29 |
+
st.error(f"Error loading data: {str(e)}")
|
30 |
+
return False
|
31 |
+
|
32 |
+
def _classify_columns(self):
|
33 |
+
for col in self.data.columns:
|
34 |
+
if pd.api.types.is_numeric_dtype(self.data[col]):
|
35 |
+
self.numeric_columns.append(col)
|
36 |
+
elif pd.api.types.is_datetime64_any_dtype(self.data[col]):
|
37 |
+
self.date_columns.append(col)
|
38 |
+
else:
|
39 |
+
try:
|
40 |
+
pd.to_datetime(self.data[col])
|
41 |
+
self.date_columns.append(col)
|
42 |
+
except:
|
43 |
+
self.categorical_columns.append(col)
|
44 |
+
|
45 |
+
def get_basic_stats(self) -> Dict[str, Any]:
|
46 |
+
if self.data is None:
|
47 |
+
return {}
|
48 |
+
|
49 |
+
stats = {
|
50 |
+
'summary': self.data[self.numeric_columns].describe(),
|
51 |
+
'missing_values': self.data.isnull().sum(),
|
52 |
+
'row_count': len(self.data),
|
53 |
+
'column_count': len(self.data.columns)
|
54 |
+
}
|
55 |
+
return stats
|
56 |
+
|
57 |
+
def create_visualization(self, chart_type: str, x_col: str, y_col: str, color_col: str = None) -> go.Figure:
|
58 |
+
if chart_type == "Line Plot":
|
59 |
+
fig = px.line(self.data, x=x_col, y=y_col, color=color_col)
|
60 |
+
elif chart_type == "Bar Plot":
|
61 |
+
fig = px.bar(self.data, x=x_col, y=y_col, color=color_col)
|
62 |
+
elif chart_type == "Scatter Plot":
|
63 |
+
fig = px.scatter(self.data, x=x_col, y=y_col, color=color_col)
|
64 |
+
elif chart_type == "Box Plot":
|
65 |
+
fig = px.box(self.data, x=x_col, y=y_col, color=color_col)
|
66 |
+
else:
|
67 |
+
fig = px.histogram(self.data, x=x_col, color=color_col)
|
68 |
+
|
69 |
+
return fig
|
70 |
+
|
71 |
+
class BrainstormManager:
|
72 |
+
def __init__(self):
|
73 |
+
if 'products' not in st.session_state:
|
74 |
+
st.session_state.products = {}
|
75 |
+
|
76 |
+
def generate_product_form(self) -> Dict:
|
77 |
+
with st.form("product_form"):
|
78 |
+
basic_info = {
|
79 |
+
"name": st.text_input("Product Name"),
|
80 |
+
"category": st.selectbox("Category", ["Digital", "Physical", "Service"]),
|
81 |
+
"description": st.text_area("Description"),
|
82 |
+
"target_audience": st.multiselect("Target Audience",
|
83 |
+
["Students", "Professionals", "Businesses", "Seniors", "Youth"]),
|
84 |
+
"price_range": st.slider("Price Range ($)", 0, 1000, (50, 200)),
|
85 |
+
"launch_date": st.date_input("Expected Launch Date")
|
86 |
+
}
|
87 |
+
|
88 |
+
st.subheader("Market Analysis")
|
89 |
+
market_analysis = {
|
90 |
+
"competitors": st.text_area("Main Competitors (one per line)"),
|
91 |
+
"unique_features": st.text_area("Unique Selling Points"),
|
92 |
+
"market_size": st.selectbox("Market Size",
|
93 |
+
["Small", "Medium", "Large", "Enterprise"]),
|
94 |
+
"growth_potential": st.slider("Growth Potential", 1, 10)
|
95 |
+
}
|
96 |
+
|
97 |
+
submitted = st.form_submit_button("Save Product")
|
98 |
+
return basic_info, market_analysis, submitted
|
99 |
+
|
100 |
+
def analyze_product(self, product_data: Dict) -> Dict:
|
101 |
+
insights = {
|
102 |
+
"market_opportunity": self._calculate_opportunity_score(product_data),
|
103 |
+
"suggested_price": self._suggest_price(product_data),
|
104 |
+
"risk_factors": self._identify_risks(product_data),
|
105 |
+
"next_steps": self._generate_next_steps(product_data)
|
106 |
+
}
|
107 |
+
return insights
|
108 |
+
|
109 |
+
def _calculate_opportunity_score(self, data: Dict) -> int:
|
110 |
+
score = 0
|
111 |
+
if data.get("market_size") == "Large":
|
112 |
+
score += 3
|
113 |
+
if len(data.get("target_audience", [])) >= 2:
|
114 |
+
score += 2
|
115 |
+
if data.get("growth_potential", 0) > 7:
|
116 |
+
score += 2
|
117 |
+
return min(score, 10)
|
118 |
+
|
119 |
+
def _suggest_price(self, data: Dict) -> float:
|
120 |
+
base_price = sum(data.get("price_range", (0, 0))) / 2
|
121 |
+
if data.get("market_size") == "Enterprise":
|
122 |
+
base_price *= 1.5
|
123 |
+
return round(base_price, 2)
|
124 |
+
|
125 |
+
def _identify_risks(self, data: Dict) -> List[str]:
|
126 |
+
risks = []
|
127 |
+
if data.get("competitors"):
|
128 |
+
risks.append("Competitive market - differentiation crucial")
|
129 |
+
if len(data.get("target_audience", [])) < 2:
|
130 |
+
risks.append("Narrow target audience - consider expansion")
|
131 |
+
return risks
|
132 |
+
|
133 |
+
def _generate_next_steps(self, data: Dict) -> List[str]:
|
134 |
+
steps = [
|
135 |
+
"Create detailed product specification",
|
136 |
+
"Develop MVP timeline",
|
137 |
+
"Plan marketing strategy"
|
138 |
+
]
|
139 |
+
if data.get("market_size") == "Enterprise":
|
140 |
+
steps.append("Prepare enterprise sales strategy")
|
141 |
+
return steps
|
142 |
+
|
143 |
+
# --- Sample Data Generation ---
|
144 |
+
def generate_sample_data():
|
145 |
+
dates = pd.date_range(start='2024-01-01', end='2024-01-31', freq='D')
|
146 |
+
return pd.DataFrame({
|
147 |
+
'Date': dates,
|
148 |
+
'Revenue': np.random.normal(1000, 100, len(dates)),
|
149 |
+
'Users': np.random.randint(100, 200, len(dates)),
|
150 |
+
'Engagement': np.random.uniform(0.5, 0.9, len(dates)),
|
151 |
+
'Category': np.random.choice(['A', 'B', 'C'], len(dates))
|
152 |
+
})
|
153 |
+
|
154 |
+
# --- Page Rendering Functions ---
|
155 |
+
def render_dashboard():
|
156 |
+
st.header("π Comprehensive Business Performance Dashboard")
|
157 |
+
|
158 |
+
# Generate sample data with more complex structure
|
159 |
+
data = generate_sample_data()
|
160 |
+
data['Profit_Margin'] = data['Revenue'] * np.random.uniform(0.1, 0.3, len(data))
|
161 |
+
|
162 |
+
# Top-level KPI Section
|
163 |
+
col1, col2, col3, col4 = st.columns(4)
|
164 |
+
with col1:
|
165 |
+
st.metric("Total Revenue",
|
166 |
+
f"${data['Revenue'].sum():,.2f}",
|
167 |
+
delta=f"{data['Revenue'].pct_change().mean()*100:.2f}%")
|
168 |
+
with col2:
|
169 |
+
st.metric("Total Users",
|
170 |
+
f"{data['Users'].sum():,}",
|
171 |
+
delta=f"{data['Users'].pct_change().mean()*100:.2f}%")
|
172 |
+
with col3:
|
173 |
+
st.metric("Avg Engagement",
|
174 |
+
f"{data['Engagement'].mean():.2%}",
|
175 |
+
delta=f"{data['Engagement'].pct_change().mean()*100:.2f}%")
|
176 |
+
with col4:
|
177 |
+
st.metric("Profit Margin",
|
178 |
+
f"{data['Profit_Margin'].mean():.2%}",
|
179 |
+
delta=f"{data['Profit_Margin'].pct_change().mean()*100:.2f}%")
|
180 |
+
|
181 |
+
# Visualization Grid
|
182 |
+
col1, col2 = st.columns(2)
|
183 |
+
|
184 |
+
with col1:
|
185 |
+
st.subheader("Revenue & Profit Trends")
|
186 |
+
fig_revenue = go.Figure()
|
187 |
+
fig_revenue.add_trace(go.Scatter(
|
188 |
+
x=data['Date'],
|
189 |
+
y=data['Revenue'],
|
190 |
+
mode='lines',
|
191 |
+
name='Revenue',
|
192 |
+
line=dict(color='blue')
|
193 |
+
))
|
194 |
+
fig_revenue.add_trace(go.Scatter(
|
195 |
+
x=data['Date'],
|
196 |
+
y=data['Profit_Margin'],
|
197 |
+
mode='lines',
|
198 |
+
name='Profit Margin',
|
199 |
+
line=dict(color='green')
|
200 |
+
))
|
201 |
+
fig_revenue.update_layout(height=350)
|
202 |
+
st.plotly_chart(fig_revenue, use_container_width=True)
|
203 |
+
|
204 |
+
with col2:
|
205 |
+
st.subheader("User Engagement Analysis")
|
206 |
+
fig_engagement = px.scatter(
|
207 |
+
data,
|
208 |
+
x='Users',
|
209 |
+
y='Engagement',
|
210 |
+
color='Category',
|
211 |
+
size='Revenue',
|
212 |
+
hover_data=['Date'],
|
213 |
+
title='User Engagement Dynamics'
|
214 |
+
)
|
215 |
+
fig_engagement.update_layout(height=350)
|
216 |
+
st.plotly_chart(fig_engagement, use_container_width=True)
|
217 |
+
|
218 |
+
# Category Performance
|
219 |
+
st.subheader("Category Performance Breakdown")
|
220 |
+
category_performance = data.groupby('Category').agg({
|
221 |
+
'Revenue': 'sum',
|
222 |
+
'Users': 'sum',
|
223 |
+
'Engagement': 'mean'
|
224 |
+
}).reset_index()
|
225 |
+
|
226 |
+
fig_category = px.bar(
|
227 |
+
category_performance,
|
228 |
+
x='Category',
|
229 |
+
y='Revenue',
|
230 |
+
color='Engagement',
|
231 |
+
title='Revenue by Category with Engagement Overlay'
|
232 |
+
)
|
233 |
+
st.plotly_chart(fig_category, use_container_width=True)
|
234 |
+
|
235 |
+
# Bottom Summary
|
236 |
+
st.subheader("Quick Insights")
|
237 |
+
insights_col1, insights_col2 = st.columns(2)
|
238 |
+
|
239 |
+
with insights_col1:
|
240 |
+
st.metric("Top Performing Category",
|
241 |
+
category_performance.loc[category_performance['Revenue'].idxmax(), 'Category'])
|
242 |
+
|
243 |
+
with insights_col2:
|
244 |
+
st.metric("Highest Engagement Category",
|
245 |
+
category_performance.loc[category_performance['Engagement'].idxmax(), 'Category'])
|
246 |
+
|
247 |
+
def render_analytics():
|
248 |
+
st.header("π Data Analytics")
|
249 |
+
|
250 |
+
processor = DataProcessor()
|
251 |
+
uploaded_file = st.file_uploader("Upload your CSV data", type=['csv'])
|
252 |
+
|
253 |
+
if uploaded_file is not None:
|
254 |
+
if processor.load_data(uploaded_file):
|
255 |
+
st.success("Data loaded successfully!")
|
256 |
+
|
257 |
+
tabs = st.tabs(["Data Preview", "Statistics", "Visualization", "Metrics"])
|
258 |
+
|
259 |
+
with tabs[0]:
|
260 |
+
st.subheader("Data Preview")
|
261 |
+
st.dataframe(processor.data.head())
|
262 |
+
st.info(f"Total rows: {len(processor.data)}, Total columns: {len(processor.data.columns)}")
|
263 |
+
|
264 |
+
with tabs[1]:
|
265 |
+
st.subheader("Basic Statistics")
|
266 |
+
stats = processor.get_basic_stats()
|
267 |
+
st.write(stats['summary'])
|
268 |
+
|
269 |
+
st.subheader("Missing Values")
|
270 |
+
st.write(stats['missing_values'])
|
271 |
+
|
272 |
+
with tabs[2]:
|
273 |
+
st.subheader("Create Visualization")
|
274 |
+
col1, col2, col3 = st.columns(3)
|
275 |
+
|
276 |
+
with col1:
|
277 |
+
chart_type = st.selectbox(
|
278 |
+
"Select Chart Type",
|
279 |
+
["Line Plot", "Bar Plot", "Scatter Plot", "Box Plot", "Histogram"]
|
280 |
+
)
|
281 |
+
|
282 |
+
with col2:
|
283 |
+
x_col = st.selectbox("Select X-axis", processor.data.columns)
|
284 |
+
|
285 |
+
with col3:
|
286 |
+
y_col = st.selectbox("Select Y-axis", processor.numeric_columns) if chart_type != "Histogram" else None
|
287 |
+
|
288 |
+
color_col = st.selectbox("Select Color Variable (optional)",
|
289 |
+
['None'] + processor.categorical_columns)
|
290 |
+
color_col = None if color_col == 'None' else color_col
|
291 |
+
|
292 |
+
fig = processor.create_visualization(
|
293 |
+
chart_type,
|
294 |
+
x_col,
|
295 |
+
y_col if y_col else x_col,
|
296 |
+
color_col
|
297 |
+
)
|
298 |
+
st.plotly_chart(fig, use_container_width=True)
|
299 |
+
|
300 |
+
with tabs[3]:
|
301 |
+
st.subheader("Column Metrics")
|
302 |
+
selected_col = st.selectbox("Select column", processor.numeric_columns)
|
303 |
+
|
304 |
+
metrics = {
|
305 |
+
'Mean': processor.data[selected_col].mean(),
|
306 |
+
'Median': processor.data[selected_col].median(),
|
307 |
+
'Std Dev': processor.data[selected_col].std(),
|
308 |
+
'Min': processor.data[selected_col].min(),
|
309 |
+
'Max': processor.data[selected_col].max()
|
310 |
+
}
|
311 |
+
|
312 |
+
cols = st.columns(len(metrics))
|
313 |
+
for col, (metric, value) in zip(cols, metrics.items()):
|
314 |
+
col.metric(metric, f"{value:.2f}")
|
315 |
+
|
316 |
+
def render_brainstorm_page():
|
317 |
+
st.title("Product Brainstorm Hub")
|
318 |
+
manager = BrainstormManager()
|
319 |
+
|
320 |
+
action = st.sidebar.radio("Action", ["View Products", "Create New Product"])
|
321 |
+
|
322 |
+
if action == "Create New Product":
|
323 |
+
basic_info, market_analysis, submitted = manager.generate_product_form()
|
324 |
+
|
325 |
+
if submitted:
|
326 |
+
product_data = {**basic_info, **market_analysis}
|
327 |
+
insights = manager.analyze_product(product_data)
|
328 |
+
|
329 |
+
product_id = f"prod_{len(st.session_state.products)}"
|
330 |
+
st.session_state.products[product_id] = {
|
331 |
+
"data": product_data,
|
332 |
+
"insights": insights,
|
333 |
+
"created_at": str(datetime.now())
|
334 |
+
}
|
335 |
+
|
336 |
+
st.success("Product added! View insights in the Products tab.")
|
337 |
+
|
338 |
+
else:
|
339 |
+
if st.session_state.products:
|
340 |
+
for prod_id, product in st.session_state.products.items():
|
341 |
+
with st.expander(f"π― {product['data']['name']}"):
|
342 |
+
col1, col2 = st.columns(2)
|
343 |
+
|
344 |
+
with col1:
|
345 |
+
st.subheader("Product Details")
|
346 |
+
st.write(f"Category: {product['data']['category']}")
|
347 |
+
st.write(f"Target: {', '.join(product['data']['target_audience'])}")
|
348 |
+
st.write(f"Description: {product['data']['description']}")
|
349 |
+
|
350 |
+
with col2:
|
351 |
+
st.subheader("Insights")
|
352 |
+
st.metric("Opportunity Score", f"{product['insights']['market_opportunity']}/10")
|
353 |
+
st.metric("Suggested Price", f"${product['insights']['suggested_price']}")
|
354 |
+
|
355 |
+
st.write("**Risk Factors:**")
|
356 |
+
for risk in product['insights']['risk_factors']:
|
357 |
+
st.write(f"- {risk}")
|
358 |
+
|
359 |
+
st.write("**Next Steps:**")
|
360 |
+
for step in product['insights']['next_steps']:
|
361 |
+
st.write(f"- {step}")
|
362 |
+
else:
|
363 |
+
st.info("No products yet. Create one to get started!")
|
364 |
+
|
365 |
+
def generate_response(self, prompt: str, context: list = None) -> str:
|
366 |
+
if not self.model or not self.tokenizer:
|
367 |
+
return "LLM not initialized. Please check model configuration."
|
368 |
+
|
369 |
+
# Prepare conversation context
|
370 |
+
if context is None:
|
371 |
+
context = []
|
372 |
+
|
373 |
+
# Create full prompt with conversation history
|
374 |
+
full_prompt = "".join([f"{msg['role']}: {msg['content']}\n" for msg in context])
|
375 |
+
full_prompt += f"user: {prompt}\nassistant: "
|
376 |
+
|
377 |
+
# Tokenize input
|
378 |
+
input_ids = self.tokenizer(full_prompt, return_tensors="pt").input_ids.to(self.model.device)
|
379 |
+
|
380 |
+
# Generate response
|
381 |
+
try:
|
382 |
+
output = self.model.generate(
|
383 |
+
input_ids,
|
384 |
+
max_length=500,
|
385 |
+
num_return_sequences=1,
|
386 |
+
no_repeat_ngram_size=2,
|
387 |
+
temperature=0.7,
|
388 |
+
top_p=0.9
|
389 |
+
)
|
390 |
+
|
391 |
+
# Decode response
|
392 |
+
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
393 |
+
|
394 |
+
# Extract only the new part of the response
|
395 |
+
response = response[len(full_prompt):].strip()
|
396 |
+
|
397 |
+
return response
|
398 |
+
except Exception as e:
|
399 |
+
return f"Response generation error: {e}"
|
400 |
+
|
401 |
+
def render_chat():
|
402 |
+
st.header("π¬AI Business Mentor")
|
403 |
+
st.title("π€ Prospira AI Business Mentor")
|
404 |
+
|
405 |
+
iframe_code = """
|
406 |
+
<iframe
|
407 |
+
src="https://demoorganisation34-vinay.hf.space"
|
408 |
+
frameborder="0"
|
409 |
+
width="850"
|
410 |
+
height="450"
|
411 |
+
></iframe>
|
412 |
+
|
413 |
+
|
414 |
+
"""
|
415 |
+
components.html(iframe_code, height=600)
|
416 |
+
|
417 |
+
def render_home():
|
418 |
+
st.title("π Welcome to Prospira")
|
419 |
+
st.subheader("π Data-Driven Solutions for Businesses and Creators")
|
420 |
+
st.markdown("""
|
421 |
+
**Prospira** empowers businesses and creators to enhance their content, products, and marketing strategies using AI-driven insights.
|
422 |
+
|
423 |
+
### **β¨ Key Features**
|
424 |
+
- **π Performance Analytics:** Real-time insights into business metrics.
|
425 |
+
- **π Competitive Analysis:** Benchmark your business against competitors.
|
426 |
+
- **π‘ Smart Product Ideas:** AI-generated recommendations for future products and content.
|
427 |
+
- **π§ AI Business Mentor:** Personalized AI guidance for strategy and growth.
|
428 |
+
Explore how **Prospira** can help optimize your decision-making and drive success! π‘π
|
429 |
+
""")
|
430 |
+
|
431 |
+
def main():
|
432 |
+
st.set_page_config(
|
433 |
+
page_title="Prospira",
|
434 |
+
page_icon="π",
|
435 |
+
layout="wide"
|
436 |
+
)
|
437 |
+
|
438 |
+
st.sidebar.title("Navigation")
|
439 |
+
page = st.sidebar.radio("Go to", ["Home", "Dashboard", "Analytics", "Brainstorm", "Chat"])
|
440 |
+
|
441 |
+
if page == "Home":
|
442 |
+
render_home()
|
443 |
+
elif page == "Dashboard":
|
444 |
+
render_dashboard()
|
445 |
+
elif page == "Analytics":
|
446 |
+
render_analytics()
|
447 |
+
elif page == "Brainstorm":
|
448 |
+
render_brainstorm_page()
|
449 |
+
elif page == "Chat":
|
450 |
+
render_chat()
|
451 |
+
|
452 |
+
if __name__ == "__main__":
|
453 |
+
main()
|
454 |
+
```
|