Spaces:
Sleeping
Sleeping
Delete pages.py
Browse files
pages.py
DELETED
@@ -1,286 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import streamlit.components.v1 as components
|
3 |
-
import plotly.express as px
|
4 |
-
import plotly.graph_objects as go
|
5 |
-
import numpy as np
|
6 |
-
from datetime import datetime
|
7 |
-
|
8 |
-
from data_processor import DataProcessor
|
9 |
-
from brainstorm_manager import BrainstormManager
|
10 |
-
from chatbot import ChatbotManager
|
11 |
-
from utils import generate_sample_data
|
12 |
-
|
13 |
-
|
14 |
-
def render_home():
|
15 |
-
st.title("π Welcome to Prospira")
|
16 |
-
st.subheader("π Data-Driven Solutions for Businesses and Creators")
|
17 |
-
st.markdown("""
|
18 |
-
**Prospira** empowers businesses and creators to enhance their content, products, and marketing strategies using AI-driven insights.
|
19 |
-
|
20 |
-
### **β¨ Key Features**
|
21 |
-
- **π Performance Analytics:** Real-time insights into business metrics.
|
22 |
-
- **π Competitive Analysis:** Benchmark your business against competitors.
|
23 |
-
- **π‘ Smart Product Ideas:** AI-generated recommendations for future products and content.
|
24 |
-
- **π§ AI Business Mentor:** Personalized AI guidance for strategy and growth.
|
25 |
-
Explore how **Prospira** can help optimize your decision-making and drive success! π‘π
|
26 |
-
""")
|
27 |
-
|
28 |
-
|
29 |
-
def render_dashboard():
|
30 |
-
st.header("π Comprehensive Business Performance Dashboard")
|
31 |
-
|
32 |
-
# Generate sample data with more complex structure
|
33 |
-
data = generate_sample_data()
|
34 |
-
data['Profit_Margin'] = data['Revenue'] * np.random.uniform(0.1, 0.3, len(data))
|
35 |
-
|
36 |
-
# Top-level KPI Section
|
37 |
-
col1, col2, col3, col4 = st.columns(4)
|
38 |
-
with col1:
|
39 |
-
st.metric("Total Revenue",
|
40 |
-
f"${data['Revenue'].sum():,.2f}",
|
41 |
-
delta=f"{data['Revenue'].pct_change().mean()*100:.2f}%")
|
42 |
-
with col2:
|
43 |
-
st.metric("Total Users",
|
44 |
-
f"{data['Users'].sum():,}",
|
45 |
-
delta=f"{data['Users'].pct_change().mean()*100:.2f}%")
|
46 |
-
with col3:
|
47 |
-
st.metric("Avg Engagement",
|
48 |
-
f"{data['Engagement'].mean():.2%}",
|
49 |
-
delta=f"{data['Engagement'].pct_change().mean()*100:.2f}%")
|
50 |
-
with col4:
|
51 |
-
st.metric("Profit Margin",
|
52 |
-
f"{data['Profit_Margin'].mean():.2%}",
|
53 |
-
delta=f"{data['Profit_Margin'].pct_change().mean()*100:.2f}%")
|
54 |
-
|
55 |
-
# Visualization Grid
|
56 |
-
col1, col2 = st.columns(2)
|
57 |
-
|
58 |
-
with col1:
|
59 |
-
st.subheader("Revenue & Profit Trends")
|
60 |
-
fig_revenue = go.Figure()
|
61 |
-
fig_revenue.add_trace(go.Scatter(
|
62 |
-
x=data['Date'],
|
63 |
-
y=data['Revenue'],
|
64 |
-
mode='lines',
|
65 |
-
name='Revenue',
|
66 |
-
line=dict(color='blue')
|
67 |
-
))
|
68 |
-
fig_revenue.add_trace(go.Scatter(
|
69 |
-
x=data['Date'],
|
70 |
-
y=data['Profit_Margin'],
|
71 |
-
mode='lines',
|
72 |
-
name='Profit Margin',
|
73 |
-
line=dict(color='green')
|
74 |
-
))
|
75 |
-
fig_revenue.update_layout(height=350)
|
76 |
-
st.plotly_chart(fig_revenue, use_container_width=True)
|
77 |
-
|
78 |
-
with col2:
|
79 |
-
st.subheader("User Engagement Analysis")
|
80 |
-
fig_engagement = px.scatter(
|
81 |
-
data,
|
82 |
-
x='Users',
|
83 |
-
y='Engagement',
|
84 |
-
color='Category',
|
85 |
-
size='Revenue',
|
86 |
-
hover_data=['Date'],
|
87 |
-
title='User Engagement Dynamics'
|
88 |
-
)
|
89 |
-
fig_engagement.update_layout(height=350)
|
90 |
-
st.plotly_chart(fig_engagement, use_container_width=True)
|
91 |
-
|
92 |
-
# Category Performance
|
93 |
-
st.subheader("Category Performance Breakdown")
|
94 |
-
category_performance = data.groupby('Category').agg({
|
95 |
-
'Revenue': 'sum',
|
96 |
-
'Users': 'sum',
|
97 |
-
'Engagement': 'mean'
|
98 |
-
}).reset_index()
|
99 |
-
|
100 |
-
fig_category = px.bar(
|
101 |
-
category_performance,
|
102 |
-
x='Category',
|
103 |
-
y='Revenue',
|
104 |
-
color='Engagement',
|
105 |
-
title='Revenue by Category with Engagement Overlay'
|
106 |
-
)
|
107 |
-
st.plotly_chart(fig_category, use_container_width=True)
|
108 |
-
|
109 |
-
# Bottom Summary
|
110 |
-
st.subheader("Quick Insights")
|
111 |
-
insights_col1, insights_col2 = st.columns(2)
|
112 |
-
|
113 |
-
with insights_col1:
|
114 |
-
st.metric("Top Performing Category",
|
115 |
-
category_performance.loc[category_performance['Revenue'].idxmax(), 'Category'])
|
116 |
-
|
117 |
-
with insights_col2:
|
118 |
-
st.metric("Highest Engagement Category",
|
119 |
-
category_performance.loc[category_performance['Engagement'].idxmax(), 'Category'])
|
120 |
-
|
121 |
-
|
122 |
-
def render_analytics():
|
123 |
-
st.header("π Data Analytics")
|
124 |
-
|
125 |
-
processor = DataProcessor()
|
126 |
-
uploaded_file = st.file_uploader("Upload your CSV data", type=['csv'])
|
127 |
-
|
128 |
-
if uploaded_file is not None:
|
129 |
-
if processor.load_data(uploaded_file):
|
130 |
-
st.success("Data loaded successfully!")
|
131 |
-
|
132 |
-
tabs = st.tabs(["Data Preview", "Statistics", "Visualization", "Metrics"])
|
133 |
-
|
134 |
-
with tabs[0]:
|
135 |
-
st.subheader("Data Preview")
|
136 |
-
st.dataframe(processor.data.head())
|
137 |
-
st.info(f"Total rows: {len(processor.data)}, Total columns: {len(processor.data.columns)}")
|
138 |
-
|
139 |
-
with tabs[1]:
|
140 |
-
st.subheader("Basic Statistics")
|
141 |
-
stats = processor.get_basic_stats()
|
142 |
-
st.write(stats['summary'])
|
143 |
-
|
144 |
-
st.subheader("Missing Values")
|
145 |
-
st.write(stats['missing_values'])
|
146 |
-
|
147 |
-
with tabs[2]:
|
148 |
-
st.subheader("Create Visualization")
|
149 |
-
col1, col2, col3 = st.columns(3)
|
150 |
-
|
151 |
-
with col1:
|
152 |
-
chart_type = st.selectbox(
|
153 |
-
"Select Chart Type",
|
154 |
-
["Line Plot", "Bar Plot", "Scatter Plot", "Box Plot", "Histogram"]
|
155 |
-
)
|
156 |
-
|
157 |
-
with col2:
|
158 |
-
x_col = st.selectbox("Select X-axis", processor.data.columns)
|
159 |
-
|
160 |
-
with col3:
|
161 |
-
y_col = st.selectbox("Select Y-axis", processor.numeric_columns) if chart_type != "Histogram" else None
|
162 |
-
|
163 |
-
color_col = st.selectbox("Select Color Variable (optional)",
|
164 |
-
['None'] + processor.categorical_columns)
|
165 |
-
color_col = None if color_col == 'None' else color_col
|
166 |
-
|
167 |
-
fig = processor.create_visualization(
|
168 |
-
chart_type,
|
169 |
-
x_col,
|
170 |
-
y_col if y_col else x_col,
|
171 |
-
color_col
|
172 |
-
)
|
173 |
-
st.plotly_chart(fig, use_container_width=True)
|
174 |
-
|
175 |
-
with tabs[3]:
|
176 |
-
st.subheader("Column Metrics")
|
177 |
-
selected_col = st.selectbox("Select column", processor.numeric_columns)
|
178 |
-
|
179 |
-
metrics = {
|
180 |
-
'Mean': processor.data[selected_col].mean(),
|
181 |
-
'Median': processor.data[selected_col].median(),
|
182 |
-
'Std Dev': processor.data[selected_col].std(),
|
183 |
-
'Min': processor.data[selected_col].min(),
|
184 |
-
'Max': processor.data[selected_col].max()
|
185 |
-
}
|
186 |
-
|
187 |
-
cols = st.columns(len(metrics))
|
188 |
-
for col, (metric, value) in zip(cols, metrics.items()):
|
189 |
-
col.metric(metric, f"{value:.2f}")
|
190 |
-
|
191 |
-
|
192 |
-
def render_brainstorm_page():
|
193 |
-
st.title("Product Brainstorm Hub")
|
194 |
-
manager = BrainstormManager()
|
195 |
-
|
196 |
-
action = st.sidebar.radio("Action", ["View Products", "Create New Product"])
|
197 |
-
|
198 |
-
if action == "Create New Product":
|
199 |
-
basic_info, market_analysis, submitted = manager.generate_product_form()
|
200 |
-
|
201 |
-
if submitted:
|
202 |
-
product_data = {**basic_info, **market_analysis}
|
203 |
-
insights = manager.analyze_product(product_data)
|
204 |
-
|
205 |
-
product_id = f"prod_{len(st.session_state.products)}"
|
206 |
-
st.session_state.products[product_id] = {
|
207 |
-
"data": product_data,
|
208 |
-
"insights": insights,
|
209 |
-
"created_at": str(datetime.now())
|
210 |
-
}
|
211 |
-
|
212 |
-
st.success("Product added! View insights in the Products tab.")
|
213 |
-
|
214 |
-
else:
|
215 |
-
if st.session_state.products:
|
216 |
-
for prod_id, product in st.session_state.products.items():
|
217 |
-
with st.expander(f"π― {product['data']['name']}"):
|
218 |
-
col1, col2 = st.columns(2)
|
219 |
-
|
220 |
-
with col1:
|
221 |
-
st.subheader("Product Details")
|
222 |
-
st.write(f"Category: {product['data']['category']}")
|
223 |
-
st.write(f"Target: {', '.join(product['data']['target_audience'])}")
|
224 |
-
st.write(f"Description: {product['data']['description']}")
|
225 |
-
|
226 |
-
with col2:
|
227 |
-
st.subheader("Insights")
|
228 |
-
st.metric("Opportunity Score", f"{product['insights']['market_opportunity']}/10")
|
229 |
-
st.metric("Suggested Price", f"${product['insights']['suggested_price']}")
|
230 |
-
|
231 |
-
st.write("**Risk Factors:**")
|
232 |
-
for risk in product['insights']['risk_factors']:
|
233 |
-
st.write(f"- {risk}")
|
234 |
-
|
235 |
-
st.write("**Next Steps:**")
|
236 |
-
for step in product['insights']['next_steps']:
|
237 |
-
st.write(f"- {step}")
|
238 |
-
else:
|
239 |
-
st.info("No products yet. Create one to get started!")
|
240 |
-
|
241 |
-
|
242 |
-
# Update the render_chat function in pages.py
|
243 |
-
def render_chat(chatbot_manager):
|
244 |
-
st.header("π¬ AI Business Mentor")
|
245 |
-
|
246 |
-
# Sidebar options
|
247 |
-
with st.sidebar:
|
248 |
-
if st.button("Clear Chat History"):
|
249 |
-
chatbot_manager.clear_chat()
|
250 |
-
st.rerun()
|
251 |
-
|
252 |
-
# Render the chat interface using the manager
|
253 |
-
chatbot_manager.render_chat_interface()
|
254 |
-
|
255 |
-
# Additional helpful sections
|
256 |
-
st.markdown("---")
|
257 |
-
st.subheader("π‘ Quick Business Topics")
|
258 |
-
|
259 |
-
col1, col2, col3 = st.columns(3)
|
260 |
-
|
261 |
-
with col1:
|
262 |
-
if st.button("π Business Strategy"):
|
263 |
-
chatbot_manager.add_message("user", "I need help with business strategy")
|
264 |
-
response = chatbot_manager.generate_response("I need help with business strategy")
|
265 |
-
chatbot_manager.add_message("assistant", response)
|
266 |
-
st.rerun()
|
267 |
-
|
268 |
-
with col2:
|
269 |
-
if st.button("π Marketing Tips"):
|
270 |
-
chatbot_manager.add_message("user", "Give me marketing advice")
|
271 |
-
response = chatbot_manager.generate_response("Give me marketing advice")
|
272 |
-
chatbot_manager.add_message("assistant", response)
|
273 |
-
st.rerun()
|
274 |
-
|
275 |
-
with col3:
|
276 |
-
if st.button("π° Financial Planning"):
|
277 |
-
chatbot_manager.add_message("user", "Help with financial planning")
|
278 |
-
response = chatbot_manager.generate_response("Help with financial planning")
|
279 |
-
chatbot_manager.add_message("assistant", response)
|
280 |
-
st.rerun()
|
281 |
-
|
282 |
-
# Optional: Keep the iframe as alternative
|
283 |
-
st.markdown("---")
|
284 |
-
st.subheader("π Alternative Chat Interface")
|
285 |
-
st.info("You can also use the external chat interface below:")
|
286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|