Spaces:
Running
Running
File size: 12,081 Bytes
bc0d02b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import streamlit as st
import streamlit.components.v1 as components
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
from datetime import datetime
from data_processor import DataProcessor
from brainstorm_manager import BrainstormManager
from chatbot import ChatbotManager
from utils import generate_sample_data
def render_home():
st.title("π Welcome to Prospira")
st.subheader("π Data-Driven Solutions for Businesses and Creators")
st.markdown("""
**Prospira** empowers businesses and creators to enhance their content, products, and marketing strategies using AI-driven insights.
### **β¨ Key Features**
- **π Performance Analytics:** Real-time insights into business metrics.
- **π Competitive Analysis:** Benchmark your business against competitors.
- **π‘ Smart Product Ideas:** AI-generated recommendations for future products and content.
- **π§ AI Business Mentor:** Personalized AI guidance for strategy and growth.
Explore how **Prospira** can help optimize your decision-making and drive success! π‘π
""")
def render_dashboard():
st.header("π Comprehensive Business Performance Dashboard")
# Generate sample data with more complex structure
data = generate_sample_data()
data['Profit_Margin'] = data['Revenue'] * np.random.uniform(0.1, 0.3, len(data))
# Top-level KPI Section
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Revenue",
f"${data['Revenue'].sum():,.2f}",
delta=f"{data['Revenue'].pct_change().mean()*100:.2f}%")
with col2:
st.metric("Total Users",
f"{data['Users'].sum():,}",
delta=f"{data['Users'].pct_change().mean()*100:.2f}%")
with col3:
st.metric("Avg Engagement",
f"{data['Engagement'].mean():.2%}",
delta=f"{data['Engagement'].pct_change().mean()*100:.2f}%")
with col4:
st.metric("Profit Margin",
f"{data['Profit_Margin'].mean():.2%}",
delta=f"{data['Profit_Margin'].pct_change().mean()*100:.2f}%")
# Visualization Grid
col1, col2 = st.columns(2)
with col1:
st.subheader("Revenue & Profit Trends")
fig_revenue = go.Figure()
fig_revenue.add_trace(go.Scatter(
x=data['Date'],
y=data['Revenue'],
mode='lines',
name='Revenue',
line=dict(color='blue')
))
fig_revenue.add_trace(go.Scatter(
x=data['Date'],
y=data['Profit_Margin'],
mode='lines',
name='Profit Margin',
line=dict(color='green')
))
fig_revenue.update_layout(height=350)
st.plotly_chart(fig_revenue, use_container_width=True)
with col2:
st.subheader("User Engagement Analysis")
fig_engagement = px.scatter(
data,
x='Users',
y='Engagement',
color='Category',
size='Revenue',
hover_data=['Date'],
title='User Engagement Dynamics'
)
fig_engagement.update_layout(height=350)
st.plotly_chart(fig_engagement, use_container_width=True)
# Category Performance
st.subheader("Category Performance Breakdown")
category_performance = data.groupby('Category').agg({
'Revenue': 'sum',
'Users': 'sum',
'Engagement': 'mean'
}).reset_index()
fig_category = px.bar(
category_performance,
x='Category',
y='Revenue',
color='Engagement',
title='Revenue by Category with Engagement Overlay'
)
st.plotly_chart(fig_category, use_container_width=True)
# Bottom Summary
st.subheader("Quick Insights")
insights_col1, insights_col2 = st.columns(2)
with insights_col1:
st.metric("Top Performing Category",
category_performance.loc[category_performance['Revenue'].idxmax(), 'Category'])
with insights_col2:
st.metric("Highest Engagement Category",
category_performance.loc[category_performance['Engagement'].idxmax(), 'Category'])
def render_analytics():
st.header("π Data Analytics")
processor = DataProcessor()
uploaded_file = st.file_uploader("Upload your CSV data", type=['csv'])
if uploaded_file is not None:
if processor.load_data(uploaded_file):
st.success("Data loaded successfully!")
tabs = st.tabs(["Data Preview", "Statistics", "Visualization", "Metrics"])
with tabs[0]:
st.subheader("Data Preview")
st.dataframe(processor.data.head())
st.info(f"Total rows: {len(processor.data)}, Total columns: {len(processor.data.columns)}")
with tabs[1]:
st.subheader("Basic Statistics")
stats = processor.get_basic_stats()
st.write(stats['summary'])
st.subheader("Missing Values")
st.write(stats['missing_values'])
with tabs[2]:
st.subheader("Create Visualization")
col1, col2, col3 = st.columns(3)
with col1:
chart_type = st.selectbox(
"Select Chart Type",
["Line Plot", "Bar Plot", "Scatter Plot", "Box Plot", "Histogram"]
)
with col2:
x_col = st.selectbox("Select X-axis", processor.data.columns)
with col3:
y_col = st.selectbox("Select Y-axis", processor.numeric_columns) if chart_type != "Histogram" else None
color_col = st.selectbox("Select Color Variable (optional)",
['None'] + processor.categorical_columns)
color_col = None if color_col == 'None' else color_col
fig = processor.create_visualization(
chart_type,
x_col,
y_col if y_col else x_col,
color_col
)
st.plotly_chart(fig, use_container_width=True)
with tabs[3]:
st.subheader("Column Metrics")
selected_col = st.selectbox("Select column", processor.numeric_columns)
metrics = {
'Mean': processor.data[selected_col].mean(),
'Median': processor.data[selected_col].median(),
'Std Dev': processor.data[selected_col].std(),
'Min': processor.data[selected_col].min(),
'Max': processor.data[selected_col].max()
}
cols = st.columns(len(metrics))
for col, (metric, value) in zip(cols, metrics.items()):
col.metric(metric, f"{value:.2f}")
def render_brainstorm_page():
st.title("Product Brainstorm Hub")
manager = BrainstormManager()
action = st.sidebar.radio("Action", ["View Products", "Create New Product"])
if action == "Create New Product":
basic_info, market_analysis, submitted = manager.generate_product_form()
if submitted:
product_data = {**basic_info, **market_analysis}
insights = manager.analyze_product(product_data)
product_id = f"prod_{len(st.session_state.products)}"
st.session_state.products[product_id] = {
"data": product_data,
"insights": insights,
"created_at": str(datetime.now())
}
st.success("Product added! View insights in the Products tab.")
else:
if st.session_state.products:
for prod_id, product in st.session_state.products.items():
with st.expander(f"π― {product['data']['name']}"):
col1, col2 = st.columns(2)
with col1:
st.subheader("Product Details")
st.write(f"Category: {product['data']['category']}")
st.write(f"Target: {', '.join(product['data']['target_audience'])}")
st.write(f"Description: {product['data']['description']}")
with col2:
st.subheader("Insights")
st.metric("Opportunity Score", f"{product['insights']['market_opportunity']}/10")
st.metric("Suggested Price", f"${product['insights']['suggested_price']}")
st.write("**Risk Factors:**")
for risk in product['insights']['risk_factors']:
st.write(f"- {risk}")
st.write("**Next Steps:**")
for step in product['insights']['next_steps']:
st.write(f"- {step}")
else:
st.info("No products yet. Create one to get started!")
def render_chat():
st.header("π¬ AI Business Mentor")
# Initialize chatbot manager
chatbot = ChatbotManager()
chatbot.initialize_chat()
# Sidebar options
st.sidebar.subheader("Chat Options")
if st.sidebar.button("Clear Chat History"):
chatbot.clear_chat()
st.rerun()
# Display chat history
st.subheader("π€ Conversation")
# Chat container
chat_container = st.container()
with chat_container:
# Display all messages
for message in chatbot.get_chat_history():
if message["role"] == "user":
with st.chat_message("user"):
st.write(message["content"])
else:
with st.chat_message("assistant"):
st.write(message["content"])
# Chat input
user_input = st.chat_input("Ask me anything about business strategy, marketing, products, or operations...")
if user_input:
# Add user message
chatbot.add_message("user", user_input)
# Generate response
with st.spinner("Thinking..."):
response = chatbot.generate_business_response(user_input)
# Add assistant response
chatbot.add_message("assistant", response)
# Rerun to update the display
st.rerun()
# Additional helpful sections
st.markdown("---")
st.subheader("π‘ Quick Business Topics")
col1, col2, col3 = st.columns(3)
with col1:
if st.button("π Business Strategy"):
chatbot.add_message("user", "I need help with business strategy")
response = chatbot.generate_business_response("I need help with business strategy")
chatbot.add_message("assistant", response)
st.rerun()
with col2:
if st.button("π Marketing Tips"):
chatbot.add_message("user", "Give me marketing advice")
response = chatbot.generate_business_response("Give me marketing advice")
chatbot.add_message("assistant", response)
st.rerun()
with col3:
if st.button("π° Financial Planning"):
chatbot.add_message("user", "Help with financial planning")
response = chatbot.generate_business_response("Help with financial planning")
chatbot.add_message("assistant", response)
st.rerun()
# Optional: Keep the iframe as alternative
st.markdown("---")
st.subheader("π Alternative Chat Interface")
st.info("You can also use the external chat interface below:")
|