Spaces:
Running
Running
Create pages.py
Browse files
pages.py
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import streamlit.components.v1 as components
|
3 |
+
import plotly.express as px
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import numpy as np
|
6 |
+
from datetime import datetime
|
7 |
+
|
8 |
+
from data_processor import DataProcessor
|
9 |
+
from brainstorm_manager import BrainstormManager
|
10 |
+
from chatbot import ChatbotManager
|
11 |
+
from utils import generate_sample_data
|
12 |
+
|
13 |
+
|
14 |
+
def render_home():
|
15 |
+
st.title("π Welcome to Prospira")
|
16 |
+
st.subheader("π Data-Driven Solutions for Businesses and Creators")
|
17 |
+
st.markdown("""
|
18 |
+
**Prospira** empowers businesses and creators to enhance their content, products, and marketing strategies using AI-driven insights.
|
19 |
+
|
20 |
+
### **β¨ Key Features**
|
21 |
+
- **π Performance Analytics:** Real-time insights into business metrics.
|
22 |
+
- **π Competitive Analysis:** Benchmark your business against competitors.
|
23 |
+
- **π‘ Smart Product Ideas:** AI-generated recommendations for future products and content.
|
24 |
+
- **π§ AI Business Mentor:** Personalized AI guidance for strategy and growth.
|
25 |
+
Explore how **Prospira** can help optimize your decision-making and drive success! π‘π
|
26 |
+
""")
|
27 |
+
|
28 |
+
|
29 |
+
def render_dashboard():
|
30 |
+
st.header("π Comprehensive Business Performance Dashboard")
|
31 |
+
|
32 |
+
# Generate sample data with more complex structure
|
33 |
+
data = generate_sample_data()
|
34 |
+
data['Profit_Margin'] = data['Revenue'] * np.random.uniform(0.1, 0.3, len(data))
|
35 |
+
|
36 |
+
# Top-level KPI Section
|
37 |
+
col1, col2, col3, col4 = st.columns(4)
|
38 |
+
with col1:
|
39 |
+
st.metric("Total Revenue",
|
40 |
+
f"${data['Revenue'].sum():,.2f}",
|
41 |
+
delta=f"{data['Revenue'].pct_change().mean()*100:.2f}%")
|
42 |
+
with col2:
|
43 |
+
st.metric("Total Users",
|
44 |
+
f"{data['Users'].sum():,}",
|
45 |
+
delta=f"{data['Users'].pct_change().mean()*100:.2f}%")
|
46 |
+
with col3:
|
47 |
+
st.metric("Avg Engagement",
|
48 |
+
f"{data['Engagement'].mean():.2%}",
|
49 |
+
delta=f"{data['Engagement'].pct_change().mean()*100:.2f}%")
|
50 |
+
with col4:
|
51 |
+
st.metric("Profit Margin",
|
52 |
+
f"{data['Profit_Margin'].mean():.2%}",
|
53 |
+
delta=f"{data['Profit_Margin'].pct_change().mean()*100:.2f}%")
|
54 |
+
|
55 |
+
# Visualization Grid
|
56 |
+
col1, col2 = st.columns(2)
|
57 |
+
|
58 |
+
with col1:
|
59 |
+
st.subheader("Revenue & Profit Trends")
|
60 |
+
fig_revenue = go.Figure()
|
61 |
+
fig_revenue.add_trace(go.Scatter(
|
62 |
+
x=data['Date'],
|
63 |
+
y=data['Revenue'],
|
64 |
+
mode='lines',
|
65 |
+
name='Revenue',
|
66 |
+
line=dict(color='blue')
|
67 |
+
))
|
68 |
+
fig_revenue.add_trace(go.Scatter(
|
69 |
+
x=data['Date'],
|
70 |
+
y=data['Profit_Margin'],
|
71 |
+
mode='lines',
|
72 |
+
name='Profit Margin',
|
73 |
+
line=dict(color='green')
|
74 |
+
))
|
75 |
+
fig_revenue.update_layout(height=350)
|
76 |
+
st.plotly_chart(fig_revenue, use_container_width=True)
|
77 |
+
|
78 |
+
with col2:
|
79 |
+
st.subheader("User Engagement Analysis")
|
80 |
+
fig_engagement = px.scatter(
|
81 |
+
data,
|
82 |
+
x='Users',
|
83 |
+
y='Engagement',
|
84 |
+
color='Category',
|
85 |
+
size='Revenue',
|
86 |
+
hover_data=['Date'],
|
87 |
+
title='User Engagement Dynamics'
|
88 |
+
)
|
89 |
+
fig_engagement.update_layout(height=350)
|
90 |
+
st.plotly_chart(fig_engagement, use_container_width=True)
|
91 |
+
|
92 |
+
# Category Performance
|
93 |
+
st.subheader("Category Performance Breakdown")
|
94 |
+
category_performance = data.groupby('Category').agg({
|
95 |
+
'Revenue': 'sum',
|
96 |
+
'Users': 'sum',
|
97 |
+
'Engagement': 'mean'
|
98 |
+
}).reset_index()
|
99 |
+
|
100 |
+
fig_category = px.bar(
|
101 |
+
category_performance,
|
102 |
+
x='Category',
|
103 |
+
y='Revenue',
|
104 |
+
color='Engagement',
|
105 |
+
title='Revenue by Category with Engagement Overlay'
|
106 |
+
)
|
107 |
+
st.plotly_chart(fig_category, use_container_width=True)
|
108 |
+
|
109 |
+
# Bottom Summary
|
110 |
+
st.subheader("Quick Insights")
|
111 |
+
insights_col1, insights_col2 = st.columns(2)
|
112 |
+
|
113 |
+
with insights_col1:
|
114 |
+
st.metric("Top Performing Category",
|
115 |
+
category_performance.loc[category_performance['Revenue'].idxmax(), 'Category'])
|
116 |
+
|
117 |
+
with insights_col2:
|
118 |
+
st.metric("Highest Engagement Category",
|
119 |
+
category_performance.loc[category_performance['Engagement'].idxmax(), 'Category'])
|
120 |
+
|
121 |
+
|
122 |
+
def render_analytics():
|
123 |
+
st.header("π Data Analytics")
|
124 |
+
|
125 |
+
processor = DataProcessor()
|
126 |
+
uploaded_file = st.file_uploader("Upload your CSV data", type=['csv'])
|
127 |
+
|
128 |
+
if uploaded_file is not None:
|
129 |
+
if processor.load_data(uploaded_file):
|
130 |
+
st.success("Data loaded successfully!")
|
131 |
+
|
132 |
+
tabs = st.tabs(["Data Preview", "Statistics", "Visualization", "Metrics"])
|
133 |
+
|
134 |
+
with tabs[0]:
|
135 |
+
st.subheader("Data Preview")
|
136 |
+
st.dataframe(processor.data.head())
|
137 |
+
st.info(f"Total rows: {len(processor.data)}, Total columns: {len(processor.data.columns)}")
|
138 |
+
|
139 |
+
with tabs[1]:
|
140 |
+
st.subheader("Basic Statistics")
|
141 |
+
stats = processor.get_basic_stats()
|
142 |
+
st.write(stats['summary'])
|
143 |
+
|
144 |
+
st.subheader("Missing Values")
|
145 |
+
st.write(stats['missing_values'])
|
146 |
+
|
147 |
+
with tabs[2]:
|
148 |
+
st.subheader("Create Visualization")
|
149 |
+
col1, col2, col3 = st.columns(3)
|
150 |
+
|
151 |
+
with col1:
|
152 |
+
chart_type = st.selectbox(
|
153 |
+
"Select Chart Type",
|
154 |
+
["Line Plot", "Bar Plot", "Scatter Plot", "Box Plot", "Histogram"]
|
155 |
+
)
|
156 |
+
|
157 |
+
with col2:
|
158 |
+
x_col = st.selectbox("Select X-axis", processor.data.columns)
|
159 |
+
|
160 |
+
with col3:
|
161 |
+
y_col = st.selectbox("Select Y-axis", processor.numeric_columns) if chart_type != "Histogram" else None
|
162 |
+
|
163 |
+
color_col = st.selectbox("Select Color Variable (optional)",
|
164 |
+
['None'] + processor.categorical_columns)
|
165 |
+
color_col = None if color_col == 'None' else color_col
|
166 |
+
|
167 |
+
fig = processor.create_visualization(
|
168 |
+
chart_type,
|
169 |
+
x_col,
|
170 |
+
y_col if y_col else x_col,
|
171 |
+
color_col
|
172 |
+
)
|
173 |
+
st.plotly_chart(fig, use_container_width=True)
|
174 |
+
|
175 |
+
with tabs[3]:
|
176 |
+
st.subheader("Column Metrics")
|
177 |
+
selected_col = st.selectbox("Select column", processor.numeric_columns)
|
178 |
+
|
179 |
+
metrics = {
|
180 |
+
'Mean': processor.data[selected_col].mean(),
|
181 |
+
'Median': processor.data[selected_col].median(),
|
182 |
+
'Std Dev': processor.data[selected_col].std(),
|
183 |
+
'Min': processor.data[selected_col].min(),
|
184 |
+
'Max': processor.data[selected_col].max()
|
185 |
+
}
|
186 |
+
|
187 |
+
cols = st.columns(len(metrics))
|
188 |
+
for col, (metric, value) in zip(cols, metrics.items()):
|
189 |
+
col.metric(metric, f"{value:.2f}")
|
190 |
+
|
191 |
+
|
192 |
+
def render_brainstorm_page():
|
193 |
+
st.title("Product Brainstorm Hub")
|
194 |
+
manager = BrainstormManager()
|
195 |
+
|
196 |
+
action = st.sidebar.radio("Action", ["View Products", "Create New Product"])
|
197 |
+
|
198 |
+
if action == "Create New Product":
|
199 |
+
basic_info, market_analysis, submitted = manager.generate_product_form()
|
200 |
+
|
201 |
+
if submitted:
|
202 |
+
product_data = {**basic_info, **market_analysis}
|
203 |
+
insights = manager.analyze_product(product_data)
|
204 |
+
|
205 |
+
product_id = f"prod_{len(st.session_state.products)}"
|
206 |
+
st.session_state.products[product_id] = {
|
207 |
+
"data": product_data,
|
208 |
+
"insights": insights,
|
209 |
+
"created_at": str(datetime.now())
|
210 |
+
}
|
211 |
+
|
212 |
+
st.success("Product added! View insights in the Products tab.")
|
213 |
+
|
214 |
+
else:
|
215 |
+
if st.session_state.products:
|
216 |
+
for prod_id, product in st.session_state.products.items():
|
217 |
+
with st.expander(f"π― {product['data']['name']}"):
|
218 |
+
col1, col2 = st.columns(2)
|
219 |
+
|
220 |
+
with col1:
|
221 |
+
st.subheader("Product Details")
|
222 |
+
st.write(f"Category: {product['data']['category']}")
|
223 |
+
st.write(f"Target: {', '.join(product['data']['target_audience'])}")
|
224 |
+
st.write(f"Description: {product['data']['description']}")
|
225 |
+
|
226 |
+
with col2:
|
227 |
+
st.subheader("Insights")
|
228 |
+
st.metric("Opportunity Score", f"{product['insights']['market_opportunity']}/10")
|
229 |
+
st.metric("Suggested Price", f"${product['insights']['suggested_price']}")
|
230 |
+
|
231 |
+
st.write("**Risk Factors:**")
|
232 |
+
for risk in product['insights']['risk_factors']:
|
233 |
+
st.write(f"- {risk}")
|
234 |
+
|
235 |
+
st.write("**Next Steps:**")
|
236 |
+
for step in product['insights']['next_steps']:
|
237 |
+
st.write(f"- {step}")
|
238 |
+
else:
|
239 |
+
st.info("No products yet. Create one to get started!")
|
240 |
+
|
241 |
+
|
242 |
+
def render_chat():
|
243 |
+
st.header("π¬ AI Business Mentor")
|
244 |
+
|
245 |
+
# Initialize chatbot manager
|
246 |
+
chatbot = ChatbotManager()
|
247 |
+
chatbot.initialize_chat()
|
248 |
+
|
249 |
+
# Sidebar options
|
250 |
+
st.sidebar.subheader("Chat Options")
|
251 |
+
if st.sidebar.button("Clear Chat History"):
|
252 |
+
chatbot.clear_chat()
|
253 |
+
st.rerun()
|
254 |
+
|
255 |
+
# Display chat history
|
256 |
+
st.subheader("π€ Conversation")
|
257 |
+
|
258 |
+
# Chat container
|
259 |
+
chat_container = st.container()
|
260 |
+
|
261 |
+
with chat_container:
|
262 |
+
# Display all messages
|
263 |
+
for message in chatbot.get_chat_history():
|
264 |
+
if message["role"] == "user":
|
265 |
+
with st.chat_message("user"):
|
266 |
+
st.write(message["content"])
|
267 |
+
else:
|
268 |
+
with st.chat_message("assistant"):
|
269 |
+
st.write(message["content"])
|
270 |
+
|
271 |
+
# Chat input
|
272 |
+
user_input = st.chat_input("Ask me anything about business strategy, marketing, products, or operations...")
|
273 |
+
|
274 |
+
if user_input:
|
275 |
+
# Add user message
|
276 |
+
chatbot.add_message("user", user_input)
|
277 |
+
|
278 |
+
# Generate response
|
279 |
+
with st.spinner("Thinking..."):
|
280 |
+
response = chatbot.generate_business_response(user_input)
|
281 |
+
|
282 |
+
# Add assistant response
|
283 |
+
chatbot.add_message("assistant", response)
|
284 |
+
|
285 |
+
# Rerun to update the display
|
286 |
+
st.rerun()
|
287 |
+
|
288 |
+
# Additional helpful sections
|
289 |
+
st.markdown("---")
|
290 |
+
st.subheader("π‘ Quick Business Topics")
|
291 |
+
|
292 |
+
col1, col2, col3 = st.columns(3)
|
293 |
+
|
294 |
+
with col1:
|
295 |
+
if st.button("π Business Strategy"):
|
296 |
+
chatbot.add_message("user", "I need help with business strategy")
|
297 |
+
response = chatbot.generate_business_response("I need help with business strategy")
|
298 |
+
chatbot.add_message("assistant", response)
|
299 |
+
st.rerun()
|
300 |
+
|
301 |
+
with col2:
|
302 |
+
if st.button("π Marketing Tips"):
|
303 |
+
chatbot.add_message("user", "Give me marketing advice")
|
304 |
+
response = chatbot.generate_business_response("Give me marketing advice")
|
305 |
+
chatbot.add_message("assistant", response)
|
306 |
+
st.rerun()
|
307 |
+
|
308 |
+
with col3:
|
309 |
+
if st.button("π° Financial Planning"):
|
310 |
+
chatbot.add_message("user", "Help with financial planning")
|
311 |
+
response = chatbot.generate_business_response("Help with financial planning")
|
312 |
+
chatbot.add_message("assistant", response)
|
313 |
+
st.rerun()
|
314 |
+
|
315 |
+
# Optional: Keep the iframe as alternative
|
316 |
+
st.markdown("---")
|
317 |
+
st.subheader("π Alternative Chat Interface")
|
318 |
+
st.info("You can also use the external chat interface below:")
|
319 |
+
|
320 |
+
iframe_code = """
|
321 |
+
<iframe
|
322 |
+
src="https://demoorganisation34-vinay.hf.space"
|
323 |
+
frameborder="0"
|
324 |
+
width="850"
|
325 |
+
height="450"
|
326 |
+
></iframe>
|
327 |
+
"""
|
328 |
+
components.html(iframe_code, height=500)
|