JAM / app.py
OrangeEye's picture
update Trust-Align
2023373
raw
history blame
8.74 kB
# import os
# # Set CUDA device dynamically
# os.environ["CUDA_VISIBLE_DEVICES"] = "5"
import spaces
import torch
import transformers
import gradio as gr
from ragatouille import RAGPretrainedModel
from huggingface_hub import InferenceClient
import re
from datetime import datetime
import json
import os
import arxiv
from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search, make_demo, make_doc_prompt, load_llama_guard, moderate, LLM
global MODEL, CURRENT_MODEL
MODEL, CURRENT_MODEL = None, None
retrieve_results = 10
show_examples = True
llm_models_to_choose = ['Trust-Align-Qwen2.5', "meta-llama/Meta-Llama-3-8B-Instruct",'None']
llm_location_map={
"Trust-Align-Qwen2.5": os.getenv("MODEL_NAME"),
"meta-llama/Meta-Llama-3-8B-Instruct": "meta-llama/Meta-Llama-3-8B-Instruct", # "Qwen/Qwen2.5-7B-Instruct"
"None": None
}
generate_kwargs = dict(
temperature = 0.1,
max_new_tokens = 512,
top_p = 1.0,
do_sample = True,
)
# Load llama Guard
llama_guard, llama_guard_tokenizer, UNSAFE_TOKEN_ID = load_llama_guard("meta-llama/Llama-Guard-3-1B")
## RAG MODEL
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")
try:
gr.Info("Setting up retriever, please wait...")
rag_initial_output = RAG.search("what is Mistral?", k = 1)
gr.Info("Retriever working successfully!")
except:
gr.Warning("Retriever not working!")
def choose_llm(choosed_llm):
global MODEL, CURRENT_MODEL
try:
gr.Info("Setting up LLM, please wait...")
MODEL = LLM(llm_location_map[choosed_llm], use_vllm=False)
CURRENT_MODEL = choosed_llm
gr.Info("LLM working successfully!")
except Exception as e:
raise RuntimeError("Failed to load the LLM MODEL.") from e
choose_llm(llm_models_to_choose[0])
# prompt used for generation
try:
with open("rejection_full.json") as f:
prompt_data = json.load(f)
except FileNotFoundError:
raise RuntimeError("Prompt data file 'rejection_full.json' not found.")
except json.JSONDecodeError:
raise RuntimeError("Failed to decode 'rejection_full.json'.")
## Header
mark_text = '# ๐Ÿ” Search Results\n'
header_text = "# ๐Ÿค– Trust-Align: Measuring and Enhancing Trustworthiness of LLMs in RAG through Grounded Attributions and Learning to Refuse\n \n"
try:
with open("README.md", "r") as f:
mdfile = f.read()
date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}'
match = re.search(date_pattern, mdfile)
date = match.group().split(': ')[1]
formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y')
header_text += f'Index Last Updated: {formatted_date}\n'
index_info = f"Semantic Search - up to {formatted_date}"
except:
index_info = "Semantic Search"
database_choices = [index_info,'Arxiv Search - Latest - (EXPERIMENTAL)']
## Arxiv API
arx_client = arxiv.Client()
is_arxiv_available = True
check_arxiv_result = get_arxiv_live_search("What is Mistral?", arx_client, retrieve_results)
if len(check_arxiv_result) == 0:
is_arxiv_available = False
print("Arxiv search not working, switching to default search ...")
database_choices = [index_info]
## Show examples (disabled)
if show_examples:
with open("sample_outputs.json", "r") as f:
sample_outputs = json.load(f)
output_placeholder = sample_outputs['output_placeholder']
md_text_initial = sample_outputs['search_placeholder']
else:
output_placeholder = None
md_text_initial = ''
def rag_cleaner(inp):
rank = inp['rank']
title = inp['document_metadata']['title']
content = inp['content']
date = inp['document_metadata']['_time']
return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
def get_references(question, retriever, k = retrieve_results):
rag_out = retriever.search(query=question, k=k)
return rag_out
def get_rag(message):
return get_references(message, RAG)
with gr.Blocks(theme = gr.themes.Soft()) as demo:
header = gr.Markdown(header_text)
with gr.Group():
msg = gr.Textbox(label = 'Search', placeholder = 'What is Mistral?')
with gr.Accordion("Advanced Settings", open=False):
with gr.Row(equal_height = True):
llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'Trust-Align-Qwen2.5', label = 'LLM MODEL')
llm_results = gr.Slider(minimum=1, maximum=retrieve_results, value=3, step=1, interactive=True, label="Top n results as context")
database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder)
input = gr.Textbox(visible=False) # placeholder
gr_md = gr.Markdown(mark_text + md_text_initial)
def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'Trust-Align-Qwen2.5'):
chat_round = [
{"role": "user",
"content": [
{"type": "text",
"text": message
}
]
}
]
# llama guard check for it
prompt_safety = moderate(chat_round, llama_guard, llama_guard_tokenizer, UNSAFE_TOKEN_ID)['generated_text']
if prompt_safety == "safe":
docs = []
database_to_use = database_choice
if database_choice == index_info:
rag_out = get_rag(message)
else:
arxiv_search_success = True
try:
rag_out = get_arxiv_live_search(message, arx_client, retrieve_results)
if len(rag_out) == 0:
arxiv_search_success = False
except:
arxiv_search_success = False
if not arxiv_search_success:
gr.Warning("Arxiv Search not working, switching to semantic search ...")
rag_out = get_rag(message)
database_to_use = index_info
md_text_updated = mark_text
for i in range(retrieve_results):
rag_answer = rag_out[i]
if i < llm_results_use:
md_text_paper, doc = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True)
docs.append(doc)
md_text_paper = md_text_paper.strip("###")
md_text_updated += f"### [{i+1}] {md_text_paper}"
# else:
# md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use)
# md_text_updated += md_text_paper
infer_item = {
"question": message,
"docs": docs,
}
prompt = make_demo(
infer_item,
prompt=prompt_data["demo_prompt"],
ndoc=llm_results_use,
doc_prompt=prompt_data["doc_prompt"],
instruction=prompt_data["instruction"],
test=True
)
else:
md_text_updated = mark_text + "### Invalid search query!"
prompt = ""
return md_text_updated, prompt
@spaces.GPU(duration=60)
def ask_llm(prompt, llm_model_picked = 'Trust-Align-Qwen2.5', stream_outputs = False):
model_disabled_text = "LLM MODEL is disabled"
output = ""
if llm_model_picked == 'None':
if stream_outputs:
for out in model_disabled_text:
output += out
yield output
return output
else:
return model_disabled_text
global MODEL
if llm_model_picked != CURRENT_MODEL:
del MODEL
import gc
gc.collect
torch.cuda.empty_cache()
choose_llm(llm_model_picked)
try:
stream = MODEL.generate(prompt, generate_kwargs["max_new_tokens"])
except:
gr.Warning("LLM Inference rate limit reached, try again later!")
return ""
if stream_outputs:
for response in stream:
output += response
yield output
return output
else:
return output
msg.submit(update_with_rag_md, [msg, llm_results, database_src, llm_model], [gr_md, input]).success(ask_llm, [input, llm_model, stream_results], output_text)
demo.queue().launch()