Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,738 Bytes
2023373 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# import os
# # Set CUDA device dynamically
# os.environ["CUDA_VISIBLE_DEVICES"] = "5"
import spaces
import torch
import transformers
import gradio as gr
from ragatouille import RAGPretrainedModel
from huggingface_hub import InferenceClient
import re
from datetime import datetime
import json
import os
import arxiv
from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search, make_demo, make_doc_prompt, load_llama_guard, moderate, LLM
global MODEL, CURRENT_MODEL
MODEL, CURRENT_MODEL = None, None
retrieve_results = 10
show_examples = True
llm_models_to_choose = ['Trust-Align-Qwen2.5', "meta-llama/Meta-Llama-3-8B-Instruct",'None']
llm_location_map={
"Trust-Align-Qwen2.5": os.getenv("MODEL_NAME"),
"meta-llama/Meta-Llama-3-8B-Instruct": "meta-llama/Meta-Llama-3-8B-Instruct", # "Qwen/Qwen2.5-7B-Instruct"
"None": None
}
generate_kwargs = dict(
temperature = 0.1,
max_new_tokens = 512,
top_p = 1.0,
do_sample = True,
)
# Load llama Guard
llama_guard, llama_guard_tokenizer, UNSAFE_TOKEN_ID = load_llama_guard("meta-llama/Llama-Guard-3-1B")
## RAG MODEL
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")
try:
gr.Info("Setting up retriever, please wait...")
rag_initial_output = RAG.search("what is Mistral?", k = 1)
gr.Info("Retriever working successfully!")
except:
gr.Warning("Retriever not working!")
def choose_llm(choosed_llm):
global MODEL, CURRENT_MODEL
try:
gr.Info("Setting up LLM, please wait...")
MODEL = LLM(llm_location_map[choosed_llm], use_vllm=False)
CURRENT_MODEL = choosed_llm
gr.Info("LLM working successfully!")
except Exception as e:
raise RuntimeError("Failed to load the LLM MODEL.") from e
choose_llm(llm_models_to_choose[0])
# prompt used for generation
try:
with open("rejection_full.json") as f:
prompt_data = json.load(f)
except FileNotFoundError:
raise RuntimeError("Prompt data file 'rejection_full.json' not found.")
except json.JSONDecodeError:
raise RuntimeError("Failed to decode 'rejection_full.json'.")
## Header
mark_text = '# ๐ Search Results\n'
header_text = "# ๐ค Trust-Align: Measuring and Enhancing Trustworthiness of LLMs in RAG through Grounded Attributions and Learning to Refuse\n \n"
try:
with open("README.md", "r") as f:
mdfile = f.read()
date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}'
match = re.search(date_pattern, mdfile)
date = match.group().split(': ')[1]
formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y')
header_text += f'Index Last Updated: {formatted_date}\n'
index_info = f"Semantic Search - up to {formatted_date}"
except:
index_info = "Semantic Search"
database_choices = [index_info,'Arxiv Search - Latest - (EXPERIMENTAL)']
## Arxiv API
arx_client = arxiv.Client()
is_arxiv_available = True
check_arxiv_result = get_arxiv_live_search("What is Mistral?", arx_client, retrieve_results)
if len(check_arxiv_result) == 0:
is_arxiv_available = False
print("Arxiv search not working, switching to default search ...")
database_choices = [index_info]
## Show examples (disabled)
if show_examples:
with open("sample_outputs.json", "r") as f:
sample_outputs = json.load(f)
output_placeholder = sample_outputs['output_placeholder']
md_text_initial = sample_outputs['search_placeholder']
else:
output_placeholder = None
md_text_initial = ''
def rag_cleaner(inp):
rank = inp['rank']
title = inp['document_metadata']['title']
content = inp['content']
date = inp['document_metadata']['_time']
return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
def get_references(question, retriever, k = retrieve_results):
rag_out = retriever.search(query=question, k=k)
return rag_out
def get_rag(message):
return get_references(message, RAG)
with gr.Blocks(theme = gr.themes.Soft()) as demo:
header = gr.Markdown(header_text)
with gr.Group():
msg = gr.Textbox(label = 'Search', placeholder = 'What is Mistral?')
with gr.Accordion("Advanced Settings", open=False):
with gr.Row(equal_height = True):
llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'Trust-Align-Qwen2.5', label = 'LLM MODEL')
llm_results = gr.Slider(minimum=1, maximum=retrieve_results, value=3, step=1, interactive=True, label="Top n results as context")
database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder)
input = gr.Textbox(visible=False) # placeholder
gr_md = gr.Markdown(mark_text + md_text_initial)
def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'Trust-Align-Qwen2.5'):
chat_round = [
{"role": "user",
"content": [
{"type": "text",
"text": message
}
]
}
]
# llama guard check for it
prompt_safety = moderate(chat_round, llama_guard, llama_guard_tokenizer, UNSAFE_TOKEN_ID)['generated_text']
if prompt_safety == "safe":
docs = []
database_to_use = database_choice
if database_choice == index_info:
rag_out = get_rag(message)
else:
arxiv_search_success = True
try:
rag_out = get_arxiv_live_search(message, arx_client, retrieve_results)
if len(rag_out) == 0:
arxiv_search_success = False
except:
arxiv_search_success = False
if not arxiv_search_success:
gr.Warning("Arxiv Search not working, switching to semantic search ...")
rag_out = get_rag(message)
database_to_use = index_info
md_text_updated = mark_text
for i in range(retrieve_results):
rag_answer = rag_out[i]
if i < llm_results_use:
md_text_paper, doc = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True)
docs.append(doc)
md_text_paper = md_text_paper.strip("###")
md_text_updated += f"### [{i+1}] {md_text_paper}"
# else:
# md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use)
# md_text_updated += md_text_paper
infer_item = {
"question": message,
"docs": docs,
}
prompt = make_demo(
infer_item,
prompt=prompt_data["demo_prompt"],
ndoc=llm_results_use,
doc_prompt=prompt_data["doc_prompt"],
instruction=prompt_data["instruction"],
test=True
)
else:
md_text_updated = mark_text + "### Invalid search query!"
prompt = ""
return md_text_updated, prompt
@spaces.GPU(duration=60)
def ask_llm(prompt, llm_model_picked = 'Trust-Align-Qwen2.5', stream_outputs = False):
model_disabled_text = "LLM MODEL is disabled"
output = ""
if llm_model_picked == 'None':
if stream_outputs:
for out in model_disabled_text:
output += out
yield output
return output
else:
return model_disabled_text
global MODEL
if llm_model_picked != CURRENT_MODEL:
del MODEL
import gc
gc.collect
torch.cuda.empty_cache()
choose_llm(llm_model_picked)
try:
stream = MODEL.generate(prompt, generate_kwargs["max_new_tokens"])
except:
gr.Warning("LLM Inference rate limit reached, try again later!")
return ""
if stream_outputs:
for response in stream:
output += response
yield output
return output
else:
return output
msg.submit(update_with_rag_md, [msg, llm_results, database_src, llm_model], [gr_md, input]).success(ask_llm, [input, llm_model, stream_results], output_text)
demo.queue().launch() |