Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from pydantic import BaseModel, Field | |
from typing import Optional | |
# Define the schema | |
class Medication(BaseModel): | |
drug_name: str = Field(description="The name of the drug.") | |
is_generic: bool = Field( | |
description="Indicates if the drug name is a generic drug name (e.g. 'Tylenol' is not generic, 'paracetamol' or 'acetaminophen' is generic)." | |
) | |
strength: Optional[str] = Field(default=None, description="The strength of the drug.") | |
unit: Optional[str] = Field(default=None, description="The unit of measurement for the drug strength.") | |
dosage_form: Optional[str] = Field(default=None, description="The form of the drug (e.g., patch, tablet).") | |
frequency: Optional[str] = Field(default=None, description="The frequency of drug administration.") | |
route: Optional[str] = Field(default=None, description="The route of administration (e.g., oral, topical).") | |
is_prn: Optional[bool] = Field(default=None, description="Whether the medication is taken 'as needed' (pro re nata).") | |
total_daily_dose_mg: Optional[float] = Field(default=None, description="The total daily dose in milligrams.") | |
# Get the schema for structured generation | |
schema = Medication.schema() | |
# Connect to your model | |
client = InferenceClient("cmcmaster/drug_parsing_Llama-3.2-1B-Instruct") | |
# Response function | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
messages.append({"role": "user", "content": message}) | |
# Structured generation with schema | |
output = client.chat_completion( | |
messages=messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
stream=False, | |
response_format={"type": "json", "value": schema}, | |
) | |
content = output.choices[0].message.content | |
yield content | |
# Gradio app | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="Extract structured medication details from this input.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |