cmcmaster's picture
Update app.py
ab0aaa1 verified
raw
history blame
2.73 kB
import gradio as gr
from huggingface_hub import InferenceClient
from pydantic import BaseModel, Field
from typing import Optional
# Define the schema
class Medication(BaseModel):
drug_name: str = Field(description="The name of the drug.")
is_generic: bool = Field(
description="Indicates if the drug name is a generic drug name (e.g. 'Tylenol' is not generic, 'paracetamol' or 'acetaminophen' is generic)."
)
strength: Optional[str] = Field(default=None, description="The strength of the drug.")
unit: Optional[str] = Field(default=None, description="The unit of measurement for the drug strength.")
dosage_form: Optional[str] = Field(default=None, description="The form of the drug (e.g., patch, tablet).")
frequency: Optional[str] = Field(default=None, description="The frequency of drug administration.")
route: Optional[str] = Field(default=None, description="The route of administration (e.g., oral, topical).")
is_prn: Optional[bool] = Field(default=None, description="Whether the medication is taken 'as needed' (pro re nata).")
total_daily_dose_mg: Optional[float] = Field(default=None, description="The total daily dose in milligrams.")
# Get the schema for structured generation
schema = Medication.schema()
# Connect to your model
client = InferenceClient("cmcmaster/drug_parsing_Llama-3.2-1B-Instruct")
# Response function
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
# Structured generation with schema
output = client.chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=False,
response_format={"type": "json", "value": schema},
)
content = output.choices[0].message.content
yield content
# Gradio app
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="Extract structured medication details from this input.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()