cmcmaster commited on
Commit
ab0aaa1
·
verified ·
1 Parent(s): bc1a548

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -32
app.py CHANGED
@@ -1,12 +1,29 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
8
 
 
 
9
 
 
 
 
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
@@ -17,48 +34,37 @@ def respond(
17
  ):
18
  messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
  max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
38
 
39
- response += token
40
- yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from pydantic import BaseModel, Field
4
+ from typing import Optional
5
 
6
+ # Define the schema
7
+ class Medication(BaseModel):
8
+ drug_name: str = Field(description="The name of the drug.")
9
+ is_generic: bool = Field(
10
+ description="Indicates if the drug name is a generic drug name (e.g. 'Tylenol' is not generic, 'paracetamol' or 'acetaminophen' is generic)."
11
+ )
12
+ strength: Optional[str] = Field(default=None, description="The strength of the drug.")
13
+ unit: Optional[str] = Field(default=None, description="The unit of measurement for the drug strength.")
14
+ dosage_form: Optional[str] = Field(default=None, description="The form of the drug (e.g., patch, tablet).")
15
+ frequency: Optional[str] = Field(default=None, description="The frequency of drug administration.")
16
+ route: Optional[str] = Field(default=None, description="The route of administration (e.g., oral, topical).")
17
+ is_prn: Optional[bool] = Field(default=None, description="Whether the medication is taken 'as needed' (pro re nata).")
18
+ total_daily_dose_mg: Optional[float] = Field(default=None, description="The total daily dose in milligrams.")
19
 
20
+ # Get the schema for structured generation
21
+ schema = Medication.schema()
22
 
23
+ # Connect to your model
24
+ client = InferenceClient("cmcmaster/drug_parsing_Llama-3.2-1B-Instruct")
25
+
26
+ # Response function
27
  def respond(
28
  message,
29
  history: list[tuple[str, str]],
 
34
  ):
35
  messages = [{"role": "system", "content": system_message}]
36
 
37
+ for user_msg, assistant_msg in history:
38
+ if user_msg:
39
+ messages.append({"role": "user", "content": user_msg})
40
+ if assistant_msg:
41
+ messages.append({"role": "assistant", "content": assistant_msg})
42
 
43
  messages.append({"role": "user", "content": message})
44
 
45
+ # Structured generation with schema
46
+ output = client.chat_completion(
47
+ messages=messages,
 
48
  max_tokens=max_tokens,
 
49
  temperature=temperature,
50
  top_p=top_p,
51
+ stream=False,
52
+ response_format={"type": "json", "value": schema},
53
+ )
54
 
55
+ content = output.choices[0].message.content
56
+ yield content
57
 
58
+ # Gradio app
 
 
 
59
  demo = gr.ChatInterface(
60
  respond,
61
  additional_inputs=[
62
+ gr.Textbox(value="Extract structured medication details from this input.", label="System message"),
63
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
64
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
65
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
66
  ],
67
  )
68
 
 
69
  if __name__ == "__main__":
70
+ demo.launch()