File size: 1,877 Bytes
9e13fb2
c0ba980
 
ab0aaa1
 
c0ba980
9e13fb2
c0ba980
ab0aaa1
 
c0ba980
ab0aaa1
 
 
 
 
c0ba980
ab0aaa1
9e13fb2
c0ba980
 
 
 
 
 
 
 
9e13fb2
c0ba980
 
ab0aaa1
9e13fb2
 
 
 
c0ba980
 
 
 
 
9e13fb2
c0ba980
9e13fb2
c0ba980
9e13fb2
c0ba980
9e13fb2
 
 
ab0aaa1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import gradio as gr
from outlines.models.llamacpp import LlamaCpp
from outlines import generate, samplers
from pydantic import BaseModel, Field
from typing import Optional
import json

# Define the output schema
class Medication(BaseModel):
    drug_name: str = Field(description="The name of the drug.")
    is_generic: bool = Field(description="Indicates if the drug name is a generic drug name.")
    strength: Optional[str] = Field(default=None, description="The strength of the drug.")
    unit: Optional[str] = Field(default=None, description="The unit of measurement for the drug strength.")
    dosage_form: Optional[str] = Field(default=None, description="The form of the drug (e.g., patch, tablet).")
    frequency: Optional[str] = Field(default=None, description="The frequency of drug administration.")
    route: Optional[str] = Field(default=None, description="The route of administration (e.g., oral, topical).")
    is_prn: Optional[bool] = Field(default=None, description="Whether the medication is taken 'as needed'.")
    total_daily_dose_mg: Optional[float] = Field(default=None, description="The total daily dose in milligrams.")

# Load your model locally via llama-cpp
model = LlamaCpp(
    model_path="/path/to/cmcmaster/drug_parsing_Llama-3.2-1B-Instruct-Q5_K_S-GGUF.gguf",  # Change this path
    temperature=0.0,
    max_tokens=512
)

sampler = samplers.greedy()

# Prepare structured generator
structured_generator = generate.json(model, Medication, sampler = sampler)

def respond(
    message,
    history: list[tuple[str, str]],
):
    try:
        medication = structured_generator(message)
        response = json.dumps(medication.model_dump(), indent=2)
    except Exception as e:
        response = f"Error: {str(e)}"

    yield response

# Gradio interface
demo = gr.ChatInterface(
    respond
)

if __name__ == "__main__":
    demo.launch()