|
import base64
|
|
from datetime import datetime
|
|
from time import perf_counter
|
|
|
|
import gradio as gr
|
|
import numpy as np
|
|
from backend.device import get_device_name, is_openvino_device
|
|
from backend.lcm_text_to_image import LCMTextToImage
|
|
from backend.models.lcmdiffusion_setting import LCMDiffusionSetting, LCMLora
|
|
from constants import APP_VERSION, DEVICE
|
|
from cv2 import imencode
|
|
|
|
lcm_text_to_image = LCMTextToImage()
|
|
lcm_lora = LCMLora(
|
|
base_model_id="Lykon/dreamshaper-8",
|
|
lcm_lora_id="latent-consistency/lcm-lora-sdv1-5",
|
|
)
|
|
|
|
|
|
|
|
def encode_pil_to_base64_new(pil_image):
|
|
image_arr = np.asarray(pil_image)[:, :, ::-1]
|
|
_, byte_data = imencode(".png", image_arr)
|
|
base64_data = base64.b64encode(byte_data)
|
|
base64_string_opencv = base64_data.decode("utf-8")
|
|
return "data:image/png;base64," + base64_string_opencv
|
|
|
|
|
|
|
|
gr.processing_utils.encode_pil_to_base64 = encode_pil_to_base64_new
|
|
|
|
|
|
def predict(
|
|
prompt,
|
|
steps,
|
|
seed,
|
|
):
|
|
lcm_diffusion_setting = LCMDiffusionSetting()
|
|
lcm_diffusion_setting.openvino_lcm_model_id = "rupeshs/sdxs-512-0.9-openvino"
|
|
lcm_diffusion_setting.prompt = prompt
|
|
lcm_diffusion_setting.guidance_scale = 1.0
|
|
lcm_diffusion_setting.inference_steps = steps
|
|
lcm_diffusion_setting.seed = seed
|
|
lcm_diffusion_setting.use_seed = True
|
|
lcm_diffusion_setting.image_width = 512
|
|
lcm_diffusion_setting.image_height = 512
|
|
lcm_diffusion_setting.use_openvino = True if is_openvino_device() else False
|
|
lcm_diffusion_setting.use_tiny_auto_encoder = True
|
|
lcm_text_to_image.init(
|
|
DEVICE,
|
|
lcm_diffusion_setting,
|
|
)
|
|
start = perf_counter()
|
|
|
|
images = lcm_text_to_image.generate(lcm_diffusion_setting)
|
|
latency = perf_counter() - start
|
|
print(f"Latency: {latency:.2f} seconds")
|
|
return images[0]
|
|
|
|
|
|
css = """
|
|
#container{
|
|
margin: 0 auto;
|
|
max-width: 40rem;
|
|
}
|
|
#intro{
|
|
max-width: 100%;
|
|
text-align: center;
|
|
margin: 0 auto;
|
|
}
|
|
#generate_button {
|
|
color: white;
|
|
border-color: #007bff;
|
|
background: #007bff;
|
|
width: 200px;
|
|
height: 50px;
|
|
}
|
|
footer {
|
|
visibility: hidden
|
|
}
|
|
"""
|
|
|
|
|
|
def _get_footer_message() -> str:
|
|
version = f"<center><p> {APP_VERSION} "
|
|
current_year = datetime.now().year
|
|
footer_msg = version + (
|
|
f' © 2023 - {current_year} <a href="https://github.com/rupeshs">'
|
|
" Rupesh Sreeraman</a></p></center>"
|
|
)
|
|
return footer_msg
|
|
|
|
|
|
with gr.Blocks(css=css) as demo:
|
|
with gr.Column(elem_id="container"):
|
|
use_openvino = "- OpenVINO" if is_openvino_device() else ""
|
|
gr.Markdown(
|
|
f"""# Realtime FastSD CPU {use_openvino}
|
|
**Device : {DEVICE} , {get_device_name()}**
|
|
""",
|
|
elem_id="intro",
|
|
)
|
|
|
|
with gr.Row():
|
|
with gr.Row():
|
|
prompt = gr.Textbox(
|
|
placeholder="Describe the image you'd like to see",
|
|
scale=5,
|
|
container=False,
|
|
)
|
|
generate_btn = gr.Button(
|
|
"Generate",
|
|
scale=1,
|
|
elem_id="generate_button",
|
|
)
|
|
|
|
image = gr.Image(type="filepath")
|
|
|
|
steps = gr.Slider(
|
|
label="Steps",
|
|
value=1,
|
|
minimum=1,
|
|
maximum=6,
|
|
step=1,
|
|
visible=False,
|
|
)
|
|
seed = gr.Slider(
|
|
randomize=True,
|
|
minimum=0,
|
|
maximum=999999999,
|
|
label="Seed",
|
|
step=1,
|
|
)
|
|
gr.HTML(_get_footer_message())
|
|
|
|
inputs = [prompt, steps, seed]
|
|
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
|
generate_btn.click(
|
|
fn=predict, inputs=inputs, outputs=image, show_progress=False
|
|
)
|
|
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
|
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
|
|
|
|
|
def start_realtime_text_to_image(share=False):
|
|
demo.queue()
|
|
demo.launch(share=share)
|
|
|