|
import gradio as gr
|
|
from os import path
|
|
from backend.lora import (
|
|
get_lora_models,
|
|
get_active_lora_weights,
|
|
update_lora_weights,
|
|
load_lora_weight,
|
|
)
|
|
from state import get_settings, get_context
|
|
from frontend.utils import get_valid_lora_model
|
|
from models.interface_types import InterfaceType
|
|
|
|
|
|
_MAX_LORA_WEIGHTS = 5
|
|
|
|
_custom_lora_sliders = []
|
|
_custom_lora_names = []
|
|
_custom_lora_columns = []
|
|
|
|
app_settings = get_settings()
|
|
|
|
|
|
def on_click_update_weight(*lora_weights):
|
|
update_weights = []
|
|
active_weights = get_active_lora_weights()
|
|
if not len(active_weights):
|
|
gr.Warning("No active LoRAs, first you need to load LoRA model")
|
|
return
|
|
for idx, lora in enumerate(active_weights):
|
|
update_weights.append(
|
|
(
|
|
lora[0],
|
|
lora_weights[idx],
|
|
)
|
|
)
|
|
if len(update_weights) > 0:
|
|
update_lora_weights(
|
|
get_context(InterfaceType.WEBUI).lcm_text_to_image.pipeline,
|
|
app_settings.settings.lcm_diffusion_setting,
|
|
update_weights,
|
|
)
|
|
|
|
|
|
def on_click_load_lora(lora_name, lora_weight):
|
|
if app_settings.settings.lcm_diffusion_setting.use_openvino:
|
|
gr.Warning("Currently LoRA is not supported in OpenVINO.")
|
|
return
|
|
lora_models_map = get_lora_models(
|
|
app_settings.settings.lcm_diffusion_setting.lora.models_dir
|
|
)
|
|
|
|
|
|
settings = app_settings.settings.lcm_diffusion_setting
|
|
settings.lora.fuse = False
|
|
settings.lora.enabled = False
|
|
print(f"Selected Lora Model :{lora_name}")
|
|
print(f"Lora weight :{lora_weight}")
|
|
settings.lora.path = lora_models_map[lora_name]
|
|
settings.lora.weight = lora_weight
|
|
if not path.exists(settings.lora.path):
|
|
gr.Warning("Invalid LoRA model path!")
|
|
return
|
|
pipeline = get_context(InterfaceType.WEBUI).lcm_text_to_image.pipeline
|
|
if not pipeline:
|
|
gr.Warning("Pipeline not initialized. Please generate an image first.")
|
|
return
|
|
settings.lora.enabled = True
|
|
load_lora_weight(
|
|
get_context(InterfaceType.WEBUI).lcm_text_to_image.pipeline,
|
|
settings,
|
|
)
|
|
|
|
|
|
global _MAX_LORA_WEIGHTS
|
|
values = []
|
|
labels = []
|
|
rows = []
|
|
active_weights = get_active_lora_weights()
|
|
for idx, lora in enumerate(active_weights):
|
|
labels.append(f"{lora[0]}: ")
|
|
values.append(lora[1])
|
|
rows.append(gr.Row.update(visible=True))
|
|
for i in range(len(active_weights), _MAX_LORA_WEIGHTS):
|
|
labels.append(f"Update weight")
|
|
values.append(0.0)
|
|
rows.append(gr.Row.update(visible=False))
|
|
return labels + values + rows
|
|
|
|
|
|
def get_lora_models_ui() -> None:
|
|
with gr.Blocks() as ui:
|
|
gr.HTML(
|
|
"Download and place your LoRA model weights in <b>lora_models</b> folders and restart App"
|
|
)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
with gr.Row():
|
|
lora_models_map = get_lora_models(
|
|
app_settings.settings.lcm_diffusion_setting.lora.models_dir
|
|
)
|
|
valid_model = get_valid_lora_model(
|
|
list(lora_models_map.values()),
|
|
app_settings.settings.lcm_diffusion_setting.lora.path,
|
|
app_settings.settings.lcm_diffusion_setting.lora.models_dir,
|
|
)
|
|
if valid_model != "":
|
|
valid_model_path = lora_models_map[valid_model]
|
|
app_settings.settings.lcm_diffusion_setting.lora.path = (
|
|
valid_model_path
|
|
)
|
|
else:
|
|
app_settings.settings.lcm_diffusion_setting.lora.path = ""
|
|
|
|
lora_model = gr.Dropdown(
|
|
lora_models_map.keys(),
|
|
label="LoRA model",
|
|
info="LoRA model weight to load (You can use Lora models from Civitai or Hugging Face .safetensors format)",
|
|
value=valid_model,
|
|
interactive=True,
|
|
)
|
|
|
|
lora_weight = gr.Slider(
|
|
0.0,
|
|
1.0,
|
|
value=app_settings.settings.lcm_diffusion_setting.lora.weight,
|
|
step=0.05,
|
|
label="Initial Lora weight",
|
|
interactive=True,
|
|
)
|
|
load_lora_btn = gr.Button(
|
|
"Load selected LoRA",
|
|
elem_id="load_lora_button",
|
|
scale=0,
|
|
)
|
|
|
|
with gr.Row():
|
|
gr.Markdown(
|
|
"## Loaded LoRA models",
|
|
show_label=False,
|
|
)
|
|
update_lora_weights_btn = gr.Button(
|
|
"Update LoRA weights",
|
|
elem_id="load_lora_button",
|
|
scale=0,
|
|
)
|
|
|
|
global _MAX_LORA_WEIGHTS
|
|
global _custom_lora_sliders
|
|
global _custom_lora_names
|
|
global _custom_lora_columns
|
|
for i in range(0, _MAX_LORA_WEIGHTS):
|
|
new_row = gr.Column(visible=False)
|
|
_custom_lora_columns.append(new_row)
|
|
with new_row:
|
|
lora_name = gr.Markdown(
|
|
"Lora Name",
|
|
show_label=True,
|
|
)
|
|
lora_slider = gr.Slider(
|
|
0.0,
|
|
1.0,
|
|
step=0.05,
|
|
label="LoRA weight",
|
|
interactive=True,
|
|
visible=True,
|
|
)
|
|
|
|
_custom_lora_names.append(lora_name)
|
|
_custom_lora_sliders.append(lora_slider)
|
|
|
|
load_lora_btn.click(
|
|
fn=on_click_load_lora,
|
|
inputs=[lora_model, lora_weight],
|
|
outputs=[
|
|
*_custom_lora_names,
|
|
*_custom_lora_sliders,
|
|
*_custom_lora_columns,
|
|
],
|
|
)
|
|
|
|
update_lora_weights_btn.click(
|
|
fn=on_click_update_weight,
|
|
inputs=[*_custom_lora_sliders],
|
|
outputs=None,
|
|
)
|
|
|