|
from os import path
|
|
from PIL import Image
|
|
from typing import Any
|
|
|
|
from constants import DEVICE
|
|
from paths import FastStableDiffusionPaths
|
|
from backend.upscale.upscaler import upscale_image
|
|
from backend.upscale.tiled_upscale import generate_upscaled_image
|
|
from frontend.webui.image_variations_ui import generate_image_variations
|
|
from backend.lora import (
|
|
get_active_lora_weights,
|
|
update_lora_weights,
|
|
load_lora_weight,
|
|
)
|
|
from backend.models.lcmdiffusion_setting import (
|
|
DiffusionTask,
|
|
ControlNetSetting,
|
|
)
|
|
|
|
|
|
_batch_count = 1
|
|
_edit_lora_settings = False
|
|
|
|
|
|
def user_value(
|
|
value_type: type,
|
|
message: str,
|
|
default_value: Any,
|
|
) -> Any:
|
|
try:
|
|
value = value_type(input(message))
|
|
except:
|
|
value = default_value
|
|
return value
|
|
|
|
|
|
def interactive_mode(
|
|
config,
|
|
context,
|
|
):
|
|
print("=============================================")
|
|
print("Welcome to FastSD CPU Interactive CLI")
|
|
print("=============================================")
|
|
while True:
|
|
print("> 1. Text to Image")
|
|
print("> 2. Image to Image")
|
|
print("> 3. Image Variations")
|
|
print("> 4. EDSR Upscale")
|
|
print("> 5. SD Upscale")
|
|
print("> 6. Edit default generation settings")
|
|
print("> 7. Edit LoRA settings")
|
|
print("> 8. Edit ControlNet settings")
|
|
print("> 9. Edit negative prompt")
|
|
print("> 10. Quit")
|
|
option = user_value(
|
|
int,
|
|
"Enter a Diffusion Task number (1): ",
|
|
1,
|
|
)
|
|
if option not in range(1, 11):
|
|
print("Wrong Diffusion Task number!")
|
|
exit()
|
|
|
|
if option == 1:
|
|
interactive_txt2img(
|
|
config,
|
|
context,
|
|
)
|
|
elif option == 2:
|
|
interactive_img2img(
|
|
config,
|
|
context,
|
|
)
|
|
elif option == 3:
|
|
interactive_variations(
|
|
config,
|
|
context,
|
|
)
|
|
elif option == 4:
|
|
interactive_edsr(
|
|
config,
|
|
context,
|
|
)
|
|
elif option == 5:
|
|
interactive_sdupscale(
|
|
config,
|
|
context,
|
|
)
|
|
elif option == 6:
|
|
interactive_settings(
|
|
config,
|
|
context,
|
|
)
|
|
elif option == 7:
|
|
interactive_lora(
|
|
config,
|
|
context,
|
|
True,
|
|
)
|
|
elif option == 8:
|
|
interactive_controlnet(
|
|
config,
|
|
context,
|
|
True,
|
|
)
|
|
elif option == 9:
|
|
interactive_negative(
|
|
config,
|
|
context,
|
|
)
|
|
elif option == 10:
|
|
exit()
|
|
|
|
|
|
def interactive_negative(
|
|
config,
|
|
context,
|
|
):
|
|
settings = config.lcm_diffusion_setting
|
|
print(f"Current negative prompt: '{settings.negative_prompt}'")
|
|
user_input = input("Write a negative prompt (set guidance > 1.0): ")
|
|
if user_input == "":
|
|
return
|
|
else:
|
|
settings.negative_prompt = user_input
|
|
|
|
|
|
def interactive_controlnet(
|
|
config,
|
|
context,
|
|
menu_flag=False,
|
|
):
|
|
"""
|
|
@param menu_flag: Indicates whether this function was called from the main
|
|
interactive CLI menu; _True_ if called from the main menu, _False_ otherwise
|
|
"""
|
|
settings = config.lcm_diffusion_setting
|
|
if not settings.controlnet:
|
|
settings.controlnet = ControlNetSetting()
|
|
|
|
current_enabled = settings.controlnet.enabled
|
|
current_adapter_path = settings.controlnet.adapter_path
|
|
current_conditioning_scale = settings.controlnet.conditioning_scale
|
|
current_control_image = settings.controlnet._control_image
|
|
|
|
option = input("Enable ControlNet? (y/N): ")
|
|
settings.controlnet.enabled = True if option.upper() == "Y" else False
|
|
if settings.controlnet.enabled:
|
|
option = input(
|
|
f"Enter ControlNet adapter path ({settings.controlnet.adapter_path}): "
|
|
)
|
|
if option != "":
|
|
settings.controlnet.adapter_path = option
|
|
settings.controlnet.conditioning_scale = user_value(
|
|
float,
|
|
f"Enter ControlNet conditioning scale ({settings.controlnet.conditioning_scale}): ",
|
|
settings.controlnet.conditioning_scale,
|
|
)
|
|
option = input(
|
|
f"Enter ControlNet control image path (Leave empty to reuse current): "
|
|
)
|
|
if option != "":
|
|
try:
|
|
new_image = Image.open(option)
|
|
settings.controlnet._control_image = new_image
|
|
except (AttributeError, FileNotFoundError) as e:
|
|
settings.controlnet._control_image = None
|
|
if (
|
|
not settings.controlnet.adapter_path
|
|
or not path.exists(settings.controlnet.adapter_path)
|
|
or not settings.controlnet._control_image
|
|
):
|
|
print("Invalid ControlNet settings! Disabling ControlNet")
|
|
settings.controlnet.enabled = False
|
|
|
|
if (
|
|
settings.controlnet.enabled != current_enabled
|
|
or settings.controlnet.adapter_path != current_adapter_path
|
|
):
|
|
settings.rebuild_pipeline = True
|
|
|
|
|
|
def interactive_lora(
|
|
config,
|
|
context,
|
|
menu_flag=False,
|
|
):
|
|
"""
|
|
@param menu_flag: Indicates whether this function was called from the main
|
|
interactive CLI menu; _True_ if called from the main menu, _False_ otherwise
|
|
"""
|
|
if context == None or context.lcm_text_to_image.pipeline == None:
|
|
print("Diffusion pipeline not initialized, please run a generation task first!")
|
|
return
|
|
|
|
print("> 1. Change LoRA weights")
|
|
print("> 2. Load new LoRA model")
|
|
option = user_value(
|
|
int,
|
|
"Enter a LoRA option (1): ",
|
|
1,
|
|
)
|
|
if option not in range(1, 3):
|
|
print("Wrong LoRA option!")
|
|
return
|
|
|
|
if option == 1:
|
|
update_weights = []
|
|
active_weights = get_active_lora_weights()
|
|
for lora in active_weights:
|
|
weight = user_value(
|
|
float,
|
|
f"Enter a new LoRA weight for {lora[0]} ({lora[1]}): ",
|
|
lora[1],
|
|
)
|
|
update_weights.append(
|
|
(
|
|
lora[0],
|
|
weight,
|
|
)
|
|
)
|
|
if len(update_weights) > 0:
|
|
update_lora_weights(
|
|
context.lcm_text_to_image.pipeline,
|
|
config.lcm_diffusion_setting,
|
|
update_weights,
|
|
)
|
|
elif option == 2:
|
|
|
|
settings = config.lcm_diffusion_setting
|
|
settings.lora.fuse = False
|
|
settings.lora.enabled = False
|
|
settings.lora.path = input("Enter LoRA model path: ")
|
|
settings.lora.weight = user_value(
|
|
float,
|
|
"Enter a LoRA weight (0.5): ",
|
|
0.5,
|
|
)
|
|
if not path.exists(settings.lora.path):
|
|
print("Invalid LoRA model path!")
|
|
return
|
|
settings.lora.enabled = True
|
|
load_lora_weight(context.lcm_text_to_image.pipeline, settings)
|
|
|
|
if menu_flag:
|
|
global _edit_lora_settings
|
|
_edit_lora_settings = False
|
|
option = input("Edit LoRA settings after every generation? (y/N): ")
|
|
if option.upper() == "Y":
|
|
_edit_lora_settings = True
|
|
|
|
|
|
def interactive_settings(
|
|
config,
|
|
context,
|
|
):
|
|
global _batch_count
|
|
settings = config.lcm_diffusion_setting
|
|
print("Enter generation settings (leave empty to use current value)")
|
|
print("> 1. Use LCM")
|
|
print("> 2. Use LCM-Lora")
|
|
print("> 3. Use OpenVINO")
|
|
option = user_value(
|
|
int,
|
|
"Select inference model option (1): ",
|
|
1,
|
|
)
|
|
if option not in range(1, 4):
|
|
print("Wrong inference model option! Falling back to defaults")
|
|
return
|
|
|
|
settings.use_lcm_lora = False
|
|
settings.use_openvino = False
|
|
if option == 1:
|
|
lcm_model_id = input(f"Enter LCM model ID ({settings.lcm_model_id}): ")
|
|
if lcm_model_id != "":
|
|
settings.lcm_model_id = lcm_model_id
|
|
elif option == 2:
|
|
settings.use_lcm_lora = True
|
|
lcm_lora_id = input(
|
|
f"Enter LCM-Lora model ID ({settings.lcm_lora.lcm_lora_id}): "
|
|
)
|
|
if lcm_lora_id != "":
|
|
settings.lcm_lora.lcm_lora_id = lcm_lora_id
|
|
base_model_id = input(
|
|
f"Enter Base model ID ({settings.lcm_lora.base_model_id}): "
|
|
)
|
|
if base_model_id != "":
|
|
settings.lcm_lora.base_model_id = base_model_id
|
|
elif option == 3:
|
|
settings.use_openvino = True
|
|
openvino_lcm_model_id = input(
|
|
f"Enter OpenVINO model ID ({settings.openvino_lcm_model_id}): "
|
|
)
|
|
if openvino_lcm_model_id != "":
|
|
settings.openvino_lcm_model_id = openvino_lcm_model_id
|
|
|
|
settings.use_offline_model = True
|
|
settings.use_tiny_auto_encoder = True
|
|
option = input("Work offline? (Y/n): ")
|
|
if option.upper() == "N":
|
|
settings.use_offline_model = False
|
|
option = input("Use Tiny Auto Encoder? (Y/n): ")
|
|
if option.upper() == "N":
|
|
settings.use_tiny_auto_encoder = False
|
|
|
|
settings.image_width = user_value(
|
|
int,
|
|
f"Image width ({settings.image_width}): ",
|
|
settings.image_width,
|
|
)
|
|
settings.image_height = user_value(
|
|
int,
|
|
f"Image height ({settings.image_height}): ",
|
|
settings.image_height,
|
|
)
|
|
settings.inference_steps = user_value(
|
|
int,
|
|
f"Inference steps ({settings.inference_steps}): ",
|
|
settings.inference_steps,
|
|
)
|
|
settings.guidance_scale = user_value(
|
|
float,
|
|
f"Guidance scale ({settings.guidance_scale}): ",
|
|
settings.guidance_scale,
|
|
)
|
|
settings.number_of_images = user_value(
|
|
int,
|
|
f"Number of images per batch ({settings.number_of_images}): ",
|
|
settings.number_of_images,
|
|
)
|
|
_batch_count = user_value(
|
|
int,
|
|
f"Batch count ({_batch_count}): ",
|
|
_batch_count,
|
|
)
|
|
|
|
print(config.lcm_diffusion_setting)
|
|
|
|
|
|
def interactive_txt2img(
|
|
config,
|
|
context,
|
|
):
|
|
global _batch_count
|
|
config.lcm_diffusion_setting.diffusion_task = DiffusionTask.text_to_image.value
|
|
user_input = input("Write a prompt (write 'exit' to quit): ")
|
|
while True:
|
|
if user_input == "exit":
|
|
return
|
|
elif user_input == "":
|
|
user_input = config.lcm_diffusion_setting.prompt
|
|
config.lcm_diffusion_setting.prompt = user_input
|
|
for _ in range(0, _batch_count):
|
|
images = context.generate_text_to_image(
|
|
settings=config,
|
|
device=DEVICE,
|
|
)
|
|
context.save_images(
|
|
images,
|
|
config,
|
|
)
|
|
if _edit_lora_settings:
|
|
interactive_lora(
|
|
config,
|
|
context,
|
|
)
|
|
user_input = input("Write a prompt: ")
|
|
|
|
|
|
def interactive_img2img(
|
|
config,
|
|
context,
|
|
):
|
|
global _batch_count
|
|
settings = config.lcm_diffusion_setting
|
|
settings.diffusion_task = DiffusionTask.image_to_image.value
|
|
steps = settings.inference_steps
|
|
source_path = input("Image path: ")
|
|
if source_path == "":
|
|
print("Error : You need to provide a file in img2img mode")
|
|
return
|
|
settings.strength = user_value(
|
|
float,
|
|
f"img2img strength ({settings.strength}): ",
|
|
settings.strength,
|
|
)
|
|
settings.inference_steps = int(steps / settings.strength + 1)
|
|
user_input = input("Write a prompt (write 'exit' to quit): ")
|
|
while True:
|
|
if user_input == "exit":
|
|
settings.inference_steps = steps
|
|
return
|
|
settings.init_image = Image.open(source_path)
|
|
settings.prompt = user_input
|
|
for _ in range(0, _batch_count):
|
|
images = context.generate_text_to_image(
|
|
settings=config,
|
|
device=DEVICE,
|
|
)
|
|
context.save_images(
|
|
images,
|
|
config,
|
|
)
|
|
new_path = input(f"Image path ({source_path}): ")
|
|
if new_path != "":
|
|
source_path = new_path
|
|
settings.strength = user_value(
|
|
float,
|
|
f"img2img strength ({settings.strength}): ",
|
|
settings.strength,
|
|
)
|
|
if _edit_lora_settings:
|
|
interactive_lora(
|
|
config,
|
|
context,
|
|
)
|
|
settings.inference_steps = int(steps / settings.strength + 1)
|
|
user_input = input("Write a prompt: ")
|
|
|
|
|
|
def interactive_variations(
|
|
config,
|
|
context,
|
|
):
|
|
global _batch_count
|
|
settings = config.lcm_diffusion_setting
|
|
settings.diffusion_task = DiffusionTask.image_to_image.value
|
|
steps = settings.inference_steps
|
|
source_path = input("Image path: ")
|
|
if source_path == "":
|
|
print("Error : You need to provide a file in Image variations mode")
|
|
return
|
|
settings.strength = user_value(
|
|
float,
|
|
f"Image variations strength ({settings.strength}): ",
|
|
settings.strength,
|
|
)
|
|
settings.inference_steps = int(steps / settings.strength + 1)
|
|
while True:
|
|
settings.init_image = Image.open(source_path)
|
|
settings.prompt = ""
|
|
for i in range(0, _batch_count):
|
|
generate_image_variations(
|
|
settings.init_image,
|
|
settings.strength,
|
|
)
|
|
if _edit_lora_settings:
|
|
interactive_lora(
|
|
config,
|
|
context,
|
|
)
|
|
user_input = input("Continue in Image variations mode? (Y/n): ")
|
|
if user_input.upper() == "N":
|
|
settings.inference_steps = steps
|
|
return
|
|
new_path = input(f"Image path ({source_path}): ")
|
|
if new_path != "":
|
|
source_path = new_path
|
|
settings.strength = user_value(
|
|
float,
|
|
f"Image variations strength ({settings.strength}): ",
|
|
settings.strength,
|
|
)
|
|
settings.inference_steps = int(steps / settings.strength + 1)
|
|
|
|
|
|
def interactive_edsr(
|
|
config,
|
|
context,
|
|
):
|
|
source_path = input("Image path: ")
|
|
if source_path == "":
|
|
print("Error : You need to provide a file in EDSR mode")
|
|
return
|
|
while True:
|
|
output_path = FastStableDiffusionPaths.get_upscale_filepath(
|
|
source_path,
|
|
2,
|
|
config.generated_images.format,
|
|
)
|
|
result = upscale_image(
|
|
context,
|
|
source_path,
|
|
output_path,
|
|
2,
|
|
)
|
|
user_input = input("Continue in EDSR upscale mode? (Y/n): ")
|
|
if user_input.upper() == "N":
|
|
return
|
|
new_path = input(f"Image path ({source_path}): ")
|
|
if new_path != "":
|
|
source_path = new_path
|
|
|
|
|
|
def interactive_sdupscale_settings(config):
|
|
steps = config.lcm_diffusion_setting.inference_steps
|
|
custom_settings = {}
|
|
print("> 1. Upscale whole image")
|
|
print("> 2. Define custom tiles (advanced)")
|
|
option = user_value(
|
|
int,
|
|
"Select an SD Upscale option (1): ",
|
|
1,
|
|
)
|
|
if option not in range(1, 3):
|
|
print("Wrong SD Upscale option!")
|
|
return
|
|
|
|
|
|
custom_settings["source_file"] = ""
|
|
new_path = input(f"Input image path ({custom_settings['source_file']}): ")
|
|
if new_path != "":
|
|
custom_settings["source_file"] = new_path
|
|
if custom_settings["source_file"] == "":
|
|
print("Error : You need to provide a file in SD Upscale mode")
|
|
return
|
|
custom_settings["target_file"] = None
|
|
if option == 2:
|
|
custom_settings["target_file"] = input("Image to patch: ")
|
|
if custom_settings["target_file"] == "":
|
|
print("No target file provided, upscaling whole input image instead!")
|
|
custom_settings["target_file"] = None
|
|
option = 1
|
|
custom_settings["output_format"] = config.generated_images.format
|
|
custom_settings["strength"] = user_value(
|
|
float,
|
|
f"SD Upscale strength ({config.lcm_diffusion_setting.strength}): ",
|
|
config.lcm_diffusion_setting.strength,
|
|
)
|
|
config.lcm_diffusion_setting.inference_steps = int(
|
|
steps / custom_settings["strength"] + 1
|
|
)
|
|
if option == 1:
|
|
custom_settings["scale_factor"] = user_value(
|
|
float,
|
|
f"Scale factor (2.0): ",
|
|
2.0,
|
|
)
|
|
custom_settings["tile_size"] = user_value(
|
|
int,
|
|
f"Split input image into tiles of the following size, in pixels (256): ",
|
|
256,
|
|
)
|
|
custom_settings["tile_overlap"] = user_value(
|
|
int,
|
|
f"Tile overlap, in pixels (16): ",
|
|
16,
|
|
)
|
|
elif option == 2:
|
|
custom_settings["scale_factor"] = user_value(
|
|
float,
|
|
"Input image to Image-to-patch scale_factor (2.0): ",
|
|
2.0,
|
|
)
|
|
custom_settings["tile_size"] = 256
|
|
custom_settings["tile_overlap"] = 16
|
|
custom_settings["prompt"] = input(
|
|
"Write a prompt describing the input image (optional): "
|
|
)
|
|
custom_settings["tiles"] = []
|
|
if option == 2:
|
|
add_tile = True
|
|
while add_tile:
|
|
print("=== Define custom SD Upscale tile ===")
|
|
tile_x = user_value(
|
|
int,
|
|
"Enter tile's X position: ",
|
|
0,
|
|
)
|
|
tile_y = user_value(
|
|
int,
|
|
"Enter tile's Y position: ",
|
|
0,
|
|
)
|
|
tile_w = user_value(
|
|
int,
|
|
"Enter tile's width (256): ",
|
|
256,
|
|
)
|
|
tile_h = user_value(
|
|
int,
|
|
"Enter tile's height (256): ",
|
|
256,
|
|
)
|
|
tile_scale = user_value(
|
|
float,
|
|
"Enter tile's scale factor (2.0): ",
|
|
2.0,
|
|
)
|
|
tile_prompt = input("Enter tile's prompt (optional): ")
|
|
custom_settings["tiles"].append(
|
|
{
|
|
"x": tile_x,
|
|
"y": tile_y,
|
|
"w": tile_w,
|
|
"h": tile_h,
|
|
"mask_box": None,
|
|
"prompt": tile_prompt,
|
|
"scale_factor": tile_scale,
|
|
}
|
|
)
|
|
tile_option = input("Do you want to define another tile? (y/N): ")
|
|
if tile_option == "" or tile_option.upper() == "N":
|
|
add_tile = False
|
|
|
|
return custom_settings
|
|
|
|
|
|
def interactive_sdupscale(
|
|
config,
|
|
context,
|
|
):
|
|
settings = config.lcm_diffusion_setting
|
|
settings.diffusion_task = DiffusionTask.image_to_image.value
|
|
settings.init_image = ""
|
|
source_path = ""
|
|
steps = settings.inference_steps
|
|
|
|
while True:
|
|
custom_upscale_settings = None
|
|
option = input("Edit custom SD Upscale settings? (y/N): ")
|
|
if option.upper() == "Y":
|
|
config.lcm_diffusion_setting.inference_steps = steps
|
|
custom_upscale_settings = interactive_sdupscale_settings(config)
|
|
if not custom_upscale_settings:
|
|
return
|
|
source_path = custom_upscale_settings["source_file"]
|
|
else:
|
|
new_path = input(f"Image path ({source_path}): ")
|
|
if new_path != "":
|
|
source_path = new_path
|
|
if source_path == "":
|
|
print("Error : You need to provide a file in SD Upscale mode")
|
|
return
|
|
settings.strength = user_value(
|
|
float,
|
|
f"SD Upscale strength ({settings.strength}): ",
|
|
settings.strength,
|
|
)
|
|
settings.inference_steps = int(steps / settings.strength + 1)
|
|
|
|
output_path = FastStableDiffusionPaths.get_upscale_filepath(
|
|
source_path,
|
|
2,
|
|
config.generated_images.format,
|
|
)
|
|
generate_upscaled_image(
|
|
config,
|
|
source_path,
|
|
settings.strength,
|
|
upscale_settings=custom_upscale_settings,
|
|
context=context,
|
|
tile_overlap=32 if settings.use_openvino else 16,
|
|
output_path=output_path,
|
|
image_format=config.generated_images.format,
|
|
)
|
|
user_input = input("Continue in SD Upscale mode? (Y/n): ")
|
|
if user_input.upper() == "N":
|
|
settings.inference_steps = steps
|
|
return
|
|
|