|
from constants import LCM_DEFAULT_MODEL
|
|
from diffusers import (
|
|
DiffusionPipeline,
|
|
AutoencoderTiny,
|
|
UNet2DConditionModel,
|
|
LCMScheduler,
|
|
StableDiffusionPipeline,
|
|
)
|
|
import torch
|
|
from backend.tiny_autoencoder import get_tiny_autoencoder_repo_id
|
|
from typing import Any
|
|
from diffusers import (
|
|
LCMScheduler,
|
|
StableDiffusionImg2ImgPipeline,
|
|
StableDiffusionXLImg2ImgPipeline,
|
|
AutoPipelineForText2Image,
|
|
AutoPipelineForImage2Image,
|
|
StableDiffusionControlNetPipeline,
|
|
)
|
|
import pathlib
|
|
|
|
|
|
def _get_lcm_pipeline_from_base_model(
|
|
lcm_model_id: str,
|
|
base_model_id: str,
|
|
use_local_model: bool,
|
|
):
|
|
pipeline = None
|
|
unet = UNet2DConditionModel.from_pretrained(
|
|
lcm_model_id,
|
|
torch_dtype=torch.float32,
|
|
local_files_only=use_local_model,
|
|
resume_download=True,
|
|
)
|
|
pipeline = DiffusionPipeline.from_pretrained(
|
|
base_model_id,
|
|
unet=unet,
|
|
torch_dtype=torch.float32,
|
|
local_files_only=use_local_model,
|
|
resume_download=True,
|
|
)
|
|
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
|
|
return pipeline
|
|
|
|
|
|
def load_taesd(
|
|
pipeline: Any,
|
|
use_local_model: bool = False,
|
|
torch_data_type: torch.dtype = torch.float32,
|
|
):
|
|
tiny_vae = get_tiny_autoencoder_repo_id(pipeline.__class__.__name__)
|
|
pipeline.vae = AutoencoderTiny.from_pretrained(
|
|
tiny_vae,
|
|
torch_dtype=torch_data_type,
|
|
local_files_only=use_local_model,
|
|
)
|
|
|
|
|
|
def get_lcm_model_pipeline(
|
|
model_id: str = LCM_DEFAULT_MODEL,
|
|
use_local_model: bool = False,
|
|
pipeline_args={},
|
|
):
|
|
pipeline = None
|
|
if model_id == "latent-consistency/lcm-sdxl":
|
|
pipeline = _get_lcm_pipeline_from_base_model(
|
|
model_id,
|
|
"stabilityai/stable-diffusion-xl-base-1.0",
|
|
use_local_model,
|
|
)
|
|
|
|
elif model_id == "latent-consistency/lcm-ssd-1b":
|
|
pipeline = _get_lcm_pipeline_from_base_model(
|
|
model_id,
|
|
"segmind/SSD-1B",
|
|
use_local_model,
|
|
)
|
|
elif pathlib.Path(model_id).suffix == ".safetensors":
|
|
|
|
|
|
|
|
dummy_pipeline = StableDiffusionPipeline.from_single_file(
|
|
model_id,
|
|
safety_checker=None,
|
|
run_safety_checker=False,
|
|
load_safety_checker=False,
|
|
local_files_only=use_local_model,
|
|
use_safetensors=True,
|
|
)
|
|
if "lcm" in model_id.lower():
|
|
dummy_pipeline.scheduler = LCMScheduler.from_config(
|
|
dummy_pipeline.scheduler.config
|
|
)
|
|
|
|
pipeline = AutoPipelineForText2Image.from_pipe(
|
|
dummy_pipeline,
|
|
**pipeline_args,
|
|
)
|
|
del dummy_pipeline
|
|
else:
|
|
|
|
pipeline = AutoPipelineForText2Image.from_pretrained(
|
|
model_id,
|
|
local_files_only=use_local_model,
|
|
**pipeline_args,
|
|
)
|
|
|
|
return pipeline
|
|
|
|
|
|
def get_image_to_image_pipeline(pipeline: Any) -> Any:
|
|
components = pipeline.components
|
|
pipeline_class = pipeline.__class__.__name__
|
|
if (
|
|
pipeline_class == "LatentConsistencyModelPipeline"
|
|
or pipeline_class == "StableDiffusionPipeline"
|
|
):
|
|
return StableDiffusionImg2ImgPipeline(**components)
|
|
elif pipeline_class == "StableDiffusionControlNetPipeline":
|
|
return AutoPipelineForImage2Image.from_pipe(pipeline)
|
|
elif pipeline_class == "StableDiffusionXLPipeline":
|
|
return StableDiffusionXLImg2ImgPipeline(**components)
|
|
else:
|
|
raise Exception(f"Unknown pipeline {pipeline_class}")
|
|
|