|
"""
|
|
Copyright(C) 2022-2023 Intel Corporation
|
|
SPDX - License - Identifier: Apache - 2.0
|
|
|
|
"""
|
|
import inspect
|
|
from typing import Union, Optional, Any, List, Dict
|
|
import numpy as np
|
|
|
|
from openvino.runtime import Core
|
|
|
|
from transformers import CLIPTokenizer
|
|
import torch
|
|
import random
|
|
|
|
from diffusers import DiffusionPipeline
|
|
from diffusers.schedulers import (DDIMScheduler,
|
|
LMSDiscreteScheduler,
|
|
PNDMScheduler,
|
|
EulerDiscreteScheduler,
|
|
EulerAncestralDiscreteScheduler)
|
|
|
|
|
|
from diffusers.image_processor import VaeImageProcessor
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
from diffusers.utils import PIL_INTERPOLATION
|
|
|
|
import cv2
|
|
import os
|
|
import sys
|
|
|
|
|
|
import concurrent.futures
|
|
|
|
|
|
import PIL
|
|
from PIL import Image
|
|
import glob
|
|
import json
|
|
import time
|
|
|
|
def scale_fit_to_window(dst_width:int, dst_height:int, image_width:int, image_height:int):
|
|
"""
|
|
Preprocessing helper function for calculating image size for resize with peserving original aspect ratio
|
|
and fitting image to specific window size
|
|
|
|
Parameters:
|
|
dst_width (int): destination window width
|
|
dst_height (int): destination window height
|
|
image_width (int): source image width
|
|
image_height (int): source image height
|
|
Returns:
|
|
result_width (int): calculated width for resize
|
|
result_height (int): calculated height for resize
|
|
"""
|
|
im_scale = min(dst_height / image_height, dst_width / image_width)
|
|
return int(im_scale * image_width), int(im_scale * image_height)
|
|
|
|
def preprocess(image: PIL.Image.Image, ht=512, wt=512):
|
|
"""
|
|
Image preprocessing function. Takes image in PIL.Image format, resizes it to keep aspect ration and fits to model input window 512x512,
|
|
then converts it to np.ndarray and adds padding with zeros on right or bottom side of image (depends from aspect ratio), after that
|
|
converts data to float32 data type and change range of values from [0, 255] to [-1, 1], finally, converts data layout from planar NHWC to NCHW.
|
|
The function returns preprocessed input tensor and padding size, which can be used in postprocessing.
|
|
|
|
Parameters:
|
|
image (PIL.Image.Image): input image
|
|
Returns:
|
|
image (np.ndarray): preprocessed image tensor
|
|
meta (Dict): dictionary with preprocessing metadata info
|
|
"""
|
|
|
|
src_width, src_height = image.size
|
|
image = image.convert('RGB')
|
|
dst_width, dst_height = scale_fit_to_window(
|
|
wt, ht, src_width, src_height)
|
|
image = np.array(image.resize((dst_width, dst_height),
|
|
resample=PIL.Image.Resampling.LANCZOS))[None, :]
|
|
|
|
pad_width = wt - dst_width
|
|
pad_height = ht - dst_height
|
|
pad = ((0, 0), (0, pad_height), (0, pad_width), (0, 0))
|
|
image = np.pad(image, pad, mode="constant")
|
|
image = image.astype(np.float32) / 255.0
|
|
image = 2.0 * image - 1.0
|
|
image = image.transpose(0, 3, 1, 2)
|
|
|
|
return image, {"padding": pad, "src_width": src_width, "src_height": src_height}
|
|
|
|
def try_enable_npu_turbo(device, core):
|
|
import platform
|
|
if "windows" in platform.system().lower():
|
|
if "NPU" in device and "3720" not in core.get_property('NPU', 'DEVICE_ARCHITECTURE'):
|
|
try:
|
|
core.set_property(properties={'NPU_TURBO': 'YES'},device_name='NPU')
|
|
except:
|
|
print(f"Failed loading NPU_TURBO for device {device}. Skipping... ")
|
|
else:
|
|
print_npu_turbo_art()
|
|
else:
|
|
print(f"Skipping NPU_TURBO for device {device}")
|
|
elif "linux" in platform.system().lower():
|
|
if os.path.isfile('/sys/module/intel_vpu/parameters/test_mode'):
|
|
with open('/sys/module/intel_vpu/version', 'r') as f:
|
|
version = f.readline().split()[0]
|
|
if tuple(map(int, version.split('.'))) < tuple(map(int, '1.9.0'.split('.'))):
|
|
print(f"The driver intel_vpu-1.9.0 (or later) needs to be loaded for NPU Turbo (currently {version}). Skipping...")
|
|
else:
|
|
with open('/sys/module/intel_vpu/parameters/test_mode', 'r') as tm_file:
|
|
test_mode = int(tm_file.readline().split()[0])
|
|
if test_mode == 512:
|
|
print_npu_turbo_art()
|
|
else:
|
|
print("The driver >=intel_vpu-1.9.0 was must be loaded with "
|
|
"\"modprobe intel_vpu test_mode=512\" to enable NPU_TURBO "
|
|
f"(currently test_mode={test_mode}). Skipping...")
|
|
else:
|
|
print(f"The driver >=intel_vpu-1.9.0 must be loaded with \"modprobe intel_vpu test_mode=512\" to enable NPU_TURBO. Skipping...")
|
|
else:
|
|
print(f"This platform ({platform.system()}) does not support NPU Turbo")
|
|
|
|
def result(var):
|
|
return next(iter(var.values()))
|
|
|
|
class StableDiffusionEngineAdvanced(DiffusionPipeline):
|
|
def __init__(self, model="runwayml/stable-diffusion-v1-5",
|
|
tokenizer="openai/clip-vit-large-patch14",
|
|
device=["CPU", "CPU", "CPU", "CPU"]):
|
|
try:
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True)
|
|
except:
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer)
|
|
self.tokenizer.save_pretrained(model)
|
|
|
|
self.core = Core()
|
|
self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')})
|
|
try_enable_npu_turbo(device, self.core)
|
|
|
|
print("Loading models... ")
|
|
|
|
|
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
|
|
futures = {
|
|
"unet_time_proj": executor.submit(self.core.compile_model, os.path.join(model, "unet_time_proj.xml"), device[0]),
|
|
"text": executor.submit(self.load_model, model, "text_encoder", device[0]),
|
|
"unet": executor.submit(self.load_model, model, "unet_int8", device[1]),
|
|
"unet_neg": executor.submit(self.load_model, model, "unet_int8", device[2]) if device[1] != device[2] else None,
|
|
"vae_decoder": executor.submit(self.load_model, model, "vae_decoder", device[3]),
|
|
"vae_encoder": executor.submit(self.load_model, model, "vae_encoder", device[3])
|
|
}
|
|
|
|
self.unet_time_proj = futures["unet_time_proj"].result()
|
|
self.text_encoder = futures["text"].result()
|
|
self.unet = futures["unet"].result()
|
|
self.unet_neg = futures["unet_neg"].result() if futures["unet_neg"] else self.unet
|
|
self.vae_decoder = futures["vae_decoder"].result()
|
|
self.vae_encoder = futures["vae_encoder"].result()
|
|
print("Text Device:", device[0])
|
|
print("unet Device:", device[1])
|
|
print("unet-neg Device:", device[2])
|
|
print("VAE Device:", device[3])
|
|
|
|
self._text_encoder_output = self.text_encoder.output(0)
|
|
self._vae_d_output = self.vae_decoder.output(0)
|
|
self._vae_e_output = self.vae_encoder.output(0) if self.vae_encoder else None
|
|
|
|
self.set_dimensions()
|
|
self.infer_request_neg = self.unet_neg.create_infer_request()
|
|
self.infer_request = self.unet.create_infer_request()
|
|
self.infer_request_time_proj = self.unet_time_proj.create_infer_request()
|
|
self.time_proj_constants = np.load(os.path.join(model, "time_proj_constants.npy"))
|
|
|
|
def load_model(self, model, model_name, device):
|
|
if "NPU" in device:
|
|
with open(os.path.join(model, f"{model_name}.blob"), "rb") as f:
|
|
return self.core.import_model(f.read(), device)
|
|
return self.core.compile_model(os.path.join(model, f"{model_name}.xml"), device)
|
|
|
|
def set_dimensions(self):
|
|
latent_shape = self.unet.input("latent_model_input").shape
|
|
if latent_shape[1] == 4:
|
|
self.height = latent_shape[2] * 8
|
|
self.width = latent_shape[3] * 8
|
|
else:
|
|
self.height = latent_shape[1] * 8
|
|
self.width = latent_shape[2] * 8
|
|
|
|
def __call__(
|
|
self,
|
|
prompt,
|
|
init_image = None,
|
|
negative_prompt=None,
|
|
scheduler=None,
|
|
strength = 0.5,
|
|
num_inference_steps = 32,
|
|
guidance_scale = 7.5,
|
|
eta = 0.0,
|
|
create_gif = False,
|
|
model = None,
|
|
callback = None,
|
|
callback_userdata = None
|
|
):
|
|
|
|
|
|
text_input = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="np",
|
|
)
|
|
text_embeddings = self.text_encoder(text_input.input_ids)[self._text_encoder_output]
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
if do_classifier_free_guidance:
|
|
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""]
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
tokens_uncond = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
return_tensors="np"
|
|
)
|
|
uncond_embeddings = self.text_encoder(tokens_uncond.input_ids)[self._text_encoder_output]
|
|
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
|
|
|
|
|
|
accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
extra_set_kwargs = {}
|
|
|
|
if accepts_offset:
|
|
extra_set_kwargs["offset"] = 1
|
|
|
|
scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
|
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler)
|
|
latent_timestep = timesteps[:1]
|
|
|
|
|
|
latents, meta = self.prepare_latents(init_image, latent_timestep, scheduler)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
if create_gif:
|
|
frames = []
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)):
|
|
if callback:
|
|
callback(i, callback_userdata)
|
|
|
|
|
|
noise_pred = []
|
|
latent_model_input = latents
|
|
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
latent_model_input_neg = latent_model_input
|
|
if self.unet.input("latent_model_input").shape[1] != 4:
|
|
|
|
try:
|
|
latent_model_input = latent_model_input.permute(0,2,3,1)
|
|
except:
|
|
latent_model_input = latent_model_input.transpose(0,2,3,1)
|
|
|
|
if self.unet_neg.input("latent_model_input").shape[1] != 4:
|
|
|
|
try:
|
|
latent_model_input_neg = latent_model_input_neg.permute(0,2,3,1)
|
|
except:
|
|
latent_model_input_neg = latent_model_input_neg.transpose(0,2,3,1)
|
|
|
|
|
|
time_proj_constants_fp16 = np.float16(self.time_proj_constants)
|
|
t_scaled_fp16 = time_proj_constants_fp16 * np.float16(t)
|
|
cosine_t_fp16 = np.cos(t_scaled_fp16)
|
|
sine_t_fp16 = np.sin(t_scaled_fp16)
|
|
|
|
t_scaled = self.time_proj_constants * np.float32(t)
|
|
|
|
cosine_t = np.cos(t_scaled)
|
|
sine_t = np.sin(t_scaled)
|
|
|
|
time_proj_dict = {"sine_t" : np.float32(sine_t), "cosine_t" : np.float32(cosine_t)}
|
|
self.infer_request_time_proj.start_async(time_proj_dict)
|
|
self.infer_request_time_proj.wait()
|
|
time_proj = self.infer_request_time_proj.get_output_tensor(0).data.astype(np.float32)
|
|
|
|
input_tens_neg_dict = {"time_proj": np.float32(time_proj), "latent_model_input":latent_model_input_neg, "encoder_hidden_states": np.expand_dims(text_embeddings[0], axis=0)}
|
|
input_tens_dict = {"time_proj": np.float32(time_proj), "latent_model_input":latent_model_input, "encoder_hidden_states": np.expand_dims(text_embeddings[1], axis=0)}
|
|
|
|
self.infer_request_neg.start_async(input_tens_neg_dict)
|
|
self.infer_request.start_async(input_tens_dict)
|
|
self.infer_request_neg.wait()
|
|
self.infer_request.wait()
|
|
|
|
noise_pred_neg = self.infer_request_neg.get_output_tensor(0)
|
|
noise_pred_pos = self.infer_request.get_output_tensor(0)
|
|
|
|
noise_pred.append(noise_pred_neg.data.astype(np.float32))
|
|
noise_pred.append(noise_pred_pos.data.astype(np.float32))
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1]
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
|
|
latents = scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)["prev_sample"].numpy()
|
|
|
|
if create_gif:
|
|
frames.append(latents)
|
|
|
|
if callback:
|
|
callback(num_inference_steps, callback_userdata)
|
|
|
|
|
|
latents = 1 / 0.18215 * latents
|
|
|
|
start = time.time()
|
|
image = self.vae_decoder(latents)[self._vae_d_output]
|
|
print("Decoder ended:",time.time() - start)
|
|
|
|
image = self.postprocess_image(image, meta)
|
|
|
|
if create_gif:
|
|
gif_folder=os.path.join(model,"../../../gif")
|
|
print("gif_folder:",gif_folder)
|
|
if not os.path.exists(gif_folder):
|
|
os.makedirs(gif_folder)
|
|
for i in range(0,len(frames)):
|
|
image = self.vae_decoder(frames[i]*(1/0.18215))[self._vae_d_output]
|
|
image = self.postprocess_image(image, meta)
|
|
output = gif_folder + "/" + str(i).zfill(3) +".png"
|
|
cv2.imwrite(output, image)
|
|
with open(os.path.join(gif_folder, "prompt.json"), "w") as file:
|
|
json.dump({"prompt": prompt}, file)
|
|
frames_image = [Image.open(image) for image in glob.glob(f"{gif_folder}/*.png")]
|
|
frame_one = frames_image[0]
|
|
gif_file=os.path.join(gif_folder,"stable_diffusion.gif")
|
|
frame_one.save(gif_file, format="GIF", append_images=frames_image, save_all=True, duration=100, loop=0)
|
|
|
|
return image
|
|
|
|
def prepare_latents(self, image:PIL.Image.Image = None, latent_timestep:torch.Tensor = None, scheduler = LMSDiscreteScheduler):
|
|
"""
|
|
Function for getting initial latents for starting generation
|
|
|
|
Parameters:
|
|
image (PIL.Image.Image, *optional*, None):
|
|
Input image for generation, if not provided randon noise will be used as starting point
|
|
latent_timestep (torch.Tensor, *optional*, None):
|
|
Predicted by scheduler initial step for image generation, required for latent image mixing with nosie
|
|
Returns:
|
|
latents (np.ndarray):
|
|
Image encoded in latent space
|
|
"""
|
|
latents_shape = (1, 4, self.height // 8, self.width // 8)
|
|
|
|
noise = np.random.randn(*latents_shape).astype(np.float32)
|
|
if image is None:
|
|
|
|
|
|
if isinstance(scheduler, LMSDiscreteScheduler):
|
|
|
|
noise = noise * scheduler.sigmas[0].numpy()
|
|
return noise, {}
|
|
elif isinstance(scheduler, EulerDiscreteScheduler) or isinstance(scheduler,EulerAncestralDiscreteScheduler):
|
|
|
|
noise = noise * scheduler.sigmas.max().numpy()
|
|
return noise, {}
|
|
else:
|
|
return noise, {}
|
|
input_image, meta = preprocess(image,self.height,self.width)
|
|
|
|
moments = self.vae_encoder(input_image)[self._vae_e_output]
|
|
|
|
mean, logvar = np.split(moments, 2, axis=1)
|
|
|
|
std = np.exp(logvar * 0.5)
|
|
latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215
|
|
|
|
|
|
latents = scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy()
|
|
return latents, meta
|
|
|
|
def postprocess_image(self, image:np.ndarray, meta:Dict):
|
|
"""
|
|
Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initial image size (if required),
|
|
normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format
|
|
|
|
Parameters:
|
|
image (np.ndarray):
|
|
Generated image
|
|
meta (Dict):
|
|
Metadata obtained on latents preparing step, can be empty
|
|
output_type (str, *optional*, pil):
|
|
Output format for result, can be pil or numpy
|
|
Returns:
|
|
image (List of np.ndarray or PIL.Image.Image):
|
|
Postprocessed images
|
|
|
|
if "src_height" in meta:
|
|
orig_height, orig_width = meta["src_height"], meta["src_width"]
|
|
image = [cv2.resize(img, (orig_width, orig_height))
|
|
for img in image]
|
|
|
|
return image
|
|
"""
|
|
if "padding" in meta:
|
|
pad = meta["padding"]
|
|
(_, end_h), (_, end_w) = pad[1:3]
|
|
h, w = image.shape[2:]
|
|
|
|
unpad_h = h - end_h
|
|
unpad_w = w - end_w
|
|
image = image[:, :, :unpad_h, :unpad_w]
|
|
image = np.clip(image / 2 + 0.5, 0, 1)
|
|
image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8)
|
|
|
|
|
|
|
|
if "src_height" in meta:
|
|
orig_height, orig_width = meta["src_height"], meta["src_width"]
|
|
image = cv2.resize(image, (orig_width, orig_height))
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
def get_timesteps(self, num_inference_steps:int, strength:float, scheduler):
|
|
"""
|
|
Helper function for getting scheduler timesteps for generation
|
|
In case of image-to-image generation, it updates number of steps according to strength
|
|
|
|
Parameters:
|
|
num_inference_steps (int):
|
|
number of inference steps for generation
|
|
strength (float):
|
|
value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.
|
|
Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.
|
|
"""
|
|
|
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
|
|
|
t_start = max(num_inference_steps - init_timestep, 0)
|
|
timesteps = scheduler.timesteps[t_start:]
|
|
|
|
return timesteps, num_inference_steps - t_start
|
|
|
|
class StableDiffusionEngine(DiffusionPipeline):
|
|
def __init__(
|
|
self,
|
|
model="bes-dev/stable-diffusion-v1-4-openvino",
|
|
tokenizer="openai/clip-vit-large-patch14",
|
|
device=["CPU","CPU","CPU","CPU"]):
|
|
|
|
self.core = Core()
|
|
self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')})
|
|
|
|
self.batch_size = 2 if device[1] == device[2] and device[1] == "GPU" else 1
|
|
try_enable_npu_turbo(device, self.core)
|
|
|
|
try:
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True)
|
|
except Exception as e:
|
|
print("Local tokenizer not found. Attempting to download...")
|
|
self.tokenizer = self.download_tokenizer(tokenizer, model)
|
|
|
|
print("Loading models... ")
|
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
|
|
text_future = executor.submit(self.load_model, model, "text_encoder", device[0])
|
|
vae_de_future = executor.submit(self.load_model, model, "vae_decoder", device[3])
|
|
vae_en_future = executor.submit(self.load_model, model, "vae_encoder", device[3])
|
|
|
|
if self.batch_size == 1:
|
|
if "int8" not in model:
|
|
unet_future = executor.submit(self.load_model, model, "unet_bs1", device[1])
|
|
unet_neg_future = executor.submit(self.load_model, model, "unet_bs1", device[2]) if device[1] != device[2] else None
|
|
else:
|
|
unet_future = executor.submit(self.load_model, model, "unet_int8a16", device[1])
|
|
unet_neg_future = executor.submit(self.load_model, model, "unet_int8a16", device[2]) if device[1] != device[2] else None
|
|
else:
|
|
unet_future = executor.submit(self.load_model, model, "unet", device[1])
|
|
unet_neg_future = None
|
|
|
|
self.unet = unet_future.result()
|
|
self.unet_neg = unet_neg_future.result() if unet_neg_future else self.unet
|
|
self.text_encoder = text_future.result()
|
|
self.vae_decoder = vae_de_future.result()
|
|
self.vae_encoder = vae_en_future.result()
|
|
print("Text Device:", device[0])
|
|
print("unet Device:", device[1])
|
|
print("unet-neg Device:", device[2])
|
|
print("VAE Device:", device[3])
|
|
|
|
self._text_encoder_output = self.text_encoder.output(0)
|
|
self._unet_output = self.unet.output(0)
|
|
self._vae_d_output = self.vae_decoder.output(0)
|
|
self._vae_e_output = self.vae_encoder.output(0) if self.vae_encoder else None
|
|
|
|
self.unet_input_tensor_name = "sample" if 'sample' in self.unet.input(0).names else "latent_model_input"
|
|
|
|
if self.batch_size == 1:
|
|
self.infer_request = self.unet.create_infer_request()
|
|
self.infer_request_neg = self.unet_neg.create_infer_request()
|
|
self._unet_neg_output = self.unet_neg.output(0)
|
|
else:
|
|
self.infer_request = None
|
|
self.infer_request_neg = None
|
|
self._unet_neg_output = None
|
|
|
|
self.set_dimensions()
|
|
|
|
|
|
|
|
def load_model(self, model, model_name, device):
|
|
if "NPU" in device:
|
|
with open(os.path.join(model, f"{model_name}.blob"), "rb") as f:
|
|
return self.core.import_model(f.read(), device)
|
|
return self.core.compile_model(os.path.join(model, f"{model_name}.xml"), device)
|
|
|
|
def set_dimensions(self):
|
|
latent_shape = self.unet.input(self.unet_input_tensor_name).shape
|
|
if latent_shape[1] == 4:
|
|
self.height = latent_shape[2] * 8
|
|
self.width = latent_shape[3] * 8
|
|
else:
|
|
self.height = latent_shape[1] * 8
|
|
self.width = latent_shape[2] * 8
|
|
|
|
def __call__(
|
|
self,
|
|
prompt,
|
|
init_image=None,
|
|
negative_prompt=None,
|
|
scheduler=None,
|
|
strength=0.5,
|
|
num_inference_steps=32,
|
|
guidance_scale=7.5,
|
|
eta=0.0,
|
|
create_gif=False,
|
|
model=None,
|
|
callback=None,
|
|
callback_userdata=None
|
|
):
|
|
|
|
text_input = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="np",
|
|
)
|
|
text_embeddings = self.text_encoder(text_input.input_ids)[self._text_encoder_output]
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
if do_classifier_free_guidance:
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""]
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
tokens_uncond = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
return_tensors="np"
|
|
)
|
|
uncond_embeddings = self.text_encoder(tokens_uncond.input_ids)[self._text_encoder_output]
|
|
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
|
|
|
|
|
|
accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
extra_set_kwargs = {}
|
|
|
|
if accepts_offset:
|
|
extra_set_kwargs["offset"] = 1
|
|
|
|
scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
|
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler)
|
|
latent_timestep = timesteps[:1]
|
|
|
|
|
|
latents, meta = self.prepare_latents(init_image, latent_timestep, scheduler,model)
|
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
if create_gif:
|
|
frames = []
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)):
|
|
if callback:
|
|
callback(i, callback_userdata)
|
|
|
|
if self.batch_size == 1:
|
|
|
|
noise_pred = []
|
|
latent_model_input = latents
|
|
|
|
|
|
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
|
latent_model_input_pos = latent_model_input
|
|
latent_model_input_neg = latent_model_input
|
|
|
|
if self.unet.input(self.unet_input_tensor_name).shape[1] != 4:
|
|
try:
|
|
latent_model_input_pos = latent_model_input_pos.permute(0,2,3,1)
|
|
except:
|
|
latent_model_input_pos = latent_model_input_pos.transpose(0,2,3,1)
|
|
|
|
if self.unet_neg.input(self.unet_input_tensor_name).shape[1] != 4:
|
|
try:
|
|
latent_model_input_neg = latent_model_input_neg.permute(0,2,3,1)
|
|
except:
|
|
latent_model_input_neg = latent_model_input_neg.transpose(0,2,3,1)
|
|
|
|
if "sample" in self.unet_input_tensor_name:
|
|
input_tens_neg_dict = {"sample" : latent_model_input_neg, "encoder_hidden_states": np.expand_dims(text_embeddings[0], axis=0), "timestep": np.expand_dims(np.float32(t), axis=0)}
|
|
input_tens_pos_dict = {"sample" : latent_model_input_pos, "encoder_hidden_states": np.expand_dims(text_embeddings[1], axis=0), "timestep": np.expand_dims(np.float32(t), axis=0)}
|
|
else:
|
|
input_tens_neg_dict = {"latent_model_input" : latent_model_input_neg, "encoder_hidden_states": np.expand_dims(text_embeddings[0], axis=0), "t": np.expand_dims(np.float32(t), axis=0)}
|
|
input_tens_pos_dict = {"latent_model_input" : latent_model_input_pos, "encoder_hidden_states": np.expand_dims(text_embeddings[1], axis=0), "t": np.expand_dims(np.float32(t), axis=0)}
|
|
|
|
self.infer_request_neg.start_async(input_tens_neg_dict)
|
|
self.infer_request.start_async(input_tens_pos_dict)
|
|
|
|
self.infer_request_neg.wait()
|
|
self.infer_request.wait()
|
|
|
|
noise_pred_neg = self.infer_request_neg.get_output_tensor(0)
|
|
noise_pred_pos = self.infer_request.get_output_tensor(0)
|
|
|
|
noise_pred.append(noise_pred_neg.data.astype(np.float32))
|
|
noise_pred.append(noise_pred_pos.data.astype(np.float32))
|
|
else:
|
|
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
|
|
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
|
noise_pred = self.unet([latent_model_input, np.array(t, dtype=np.float32), text_embeddings])[self._unet_output]
|
|
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1]
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
|
|
latents = scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)["prev_sample"].numpy()
|
|
|
|
if create_gif:
|
|
frames.append(latents)
|
|
|
|
if callback:
|
|
callback(num_inference_steps, callback_userdata)
|
|
|
|
|
|
|
|
latents = 1 / 0.18215 * latents
|
|
image = self.vae_decoder(latents)[self._vae_d_output]
|
|
image = self.postprocess_image(image, meta)
|
|
|
|
return image
|
|
|
|
def prepare_latents(self, image: PIL.Image.Image = None, latent_timestep: torch.Tensor = None,
|
|
scheduler=LMSDiscreteScheduler,model=None):
|
|
"""
|
|
Function for getting initial latents for starting generation
|
|
|
|
Parameters:
|
|
image (PIL.Image.Image, *optional*, None):
|
|
Input image for generation, if not provided randon noise will be used as starting point
|
|
latent_timestep (torch.Tensor, *optional*, None):
|
|
Predicted by scheduler initial step for image generation, required for latent image mixing with nosie
|
|
Returns:
|
|
latents (np.ndarray):
|
|
Image encoded in latent space
|
|
"""
|
|
latents_shape = (1, 4, self.height // 8, self.width // 8)
|
|
|
|
noise = np.random.randn(*latents_shape).astype(np.float32)
|
|
if image is None:
|
|
|
|
|
|
if isinstance(scheduler, LMSDiscreteScheduler):
|
|
|
|
noise = noise * scheduler.sigmas[0].numpy()
|
|
return noise, {}
|
|
elif isinstance(scheduler, EulerDiscreteScheduler):
|
|
|
|
noise = noise * scheduler.sigmas.max().numpy()
|
|
return noise, {}
|
|
else:
|
|
return noise, {}
|
|
input_image, meta = preprocess(image, self.height, self.width)
|
|
|
|
moments = self.vae_encoder(input_image)[self._vae_e_output]
|
|
|
|
if "sd_2.1" in model:
|
|
latents = moments * 0.18215
|
|
|
|
else:
|
|
|
|
mean, logvar = np.split(moments, 2, axis=1)
|
|
|
|
std = np.exp(logvar * 0.5)
|
|
latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215
|
|
|
|
latents = scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy()
|
|
return latents, meta
|
|
|
|
|
|
def postprocess_image(self, image: np.ndarray, meta: Dict):
|
|
"""
|
|
Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initila image size (if required),
|
|
normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format
|
|
|
|
Parameters:
|
|
image (np.ndarray):
|
|
Generated image
|
|
meta (Dict):
|
|
Metadata obtained on latents preparing step, can be empty
|
|
output_type (str, *optional*, pil):
|
|
Output format for result, can be pil or numpy
|
|
Returns:
|
|
image (List of np.ndarray or PIL.Image.Image):
|
|
Postprocessed images
|
|
|
|
if "src_height" in meta:
|
|
orig_height, orig_width = meta["src_height"], meta["src_width"]
|
|
image = [cv2.resize(img, (orig_width, orig_height))
|
|
for img in image]
|
|
|
|
return image
|
|
"""
|
|
if "padding" in meta:
|
|
pad = meta["padding"]
|
|
(_, end_h), (_, end_w) = pad[1:3]
|
|
h, w = image.shape[2:]
|
|
|
|
unpad_h = h - end_h
|
|
unpad_w = w - end_w
|
|
image = image[:, :, :unpad_h, :unpad_w]
|
|
image = np.clip(image / 2 + 0.5, 0, 1)
|
|
image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8)
|
|
|
|
if "src_height" in meta:
|
|
orig_height, orig_width = meta["src_height"], meta["src_width"]
|
|
image = cv2.resize(image, (orig_width, orig_height))
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
def get_timesteps(self, num_inference_steps: int, strength: float, scheduler):
|
|
"""
|
|
Helper function for getting scheduler timesteps for generation
|
|
In case of image-to-image generation, it updates number of steps according to strength
|
|
|
|
Parameters:
|
|
num_inference_steps (int):
|
|
number of inference steps for generation
|
|
strength (float):
|
|
value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.
|
|
Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.
|
|
"""
|
|
|
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
|
|
|
t_start = max(num_inference_steps - init_timestep, 0)
|
|
timesteps = scheduler.timesteps[t_start:]
|
|
|
|
return timesteps, num_inference_steps - t_start
|
|
|
|
class LatentConsistencyEngine(DiffusionPipeline):
|
|
def __init__(
|
|
self,
|
|
model="SimianLuo/LCM_Dreamshaper_v7",
|
|
tokenizer="openai/clip-vit-large-patch14",
|
|
device=["CPU", "CPU", "CPU"],
|
|
):
|
|
super().__init__()
|
|
try:
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True)
|
|
except:
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer)
|
|
self.tokenizer.save_pretrained(model)
|
|
|
|
self.core = Core()
|
|
self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')})
|
|
try_enable_npu_turbo(device, self.core)
|
|
|
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
|
|
text_future = executor.submit(self.load_model, model, "text_encoder", device[0])
|
|
unet_future = executor.submit(self.load_model, model, "unet", device[1])
|
|
vae_de_future = executor.submit(self.load_model, model, "vae_decoder", device[2])
|
|
|
|
print("Text Device:", device[0])
|
|
self.text_encoder = text_future.result()
|
|
self._text_encoder_output = self.text_encoder.output(0)
|
|
|
|
print("Unet Device:", device[1])
|
|
self.unet = unet_future.result()
|
|
self._unet_output = self.unet.output(0)
|
|
self.infer_request = self.unet.create_infer_request()
|
|
|
|
print(f"VAE Device: {device[2]}")
|
|
self.vae_decoder = vae_de_future.result()
|
|
self.infer_request_vae = self.vae_decoder.create_infer_request()
|
|
self.safety_checker = None
|
|
self.feature_extractor = None
|
|
self.vae_scale_factor = 2 ** 3
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
|
|
|
def load_model(self, model, model_name, device):
|
|
if "NPU" in device:
|
|
with open(os.path.join(model, f"{model_name}.blob"), "rb") as f:
|
|
return self.core.import_model(f.read(), device)
|
|
return self.core.compile_model(os.path.join(model, f"{model_name}.xml"), device)
|
|
|
|
def _encode_prompt(
|
|
self,
|
|
prompt,
|
|
num_images_per_prompt,
|
|
prompt_embeds: None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
"""
|
|
|
|
if prompt_embeds is None:
|
|
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = self.tokenizer(
|
|
prompt, padding="longest", return_tensors="pt"
|
|
).input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[
|
|
-1
|
|
] and not torch.equal(text_input_ids, untruncated_ids):
|
|
removed_text = self.tokenizer.batch_decode(
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
|
|
prompt_embeds = self.text_encoder(text_input_ids, share_inputs=True, share_outputs=True)
|
|
prompt_embeds = torch.from_numpy(prompt_embeds[0])
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(
|
|
bs_embed * num_images_per_prompt, seq_len, -1
|
|
)
|
|
|
|
|
|
return prompt_embeds
|
|
|
|
def run_safety_checker(self, image, dtype):
|
|
if self.safety_checker is None:
|
|
has_nsfw_concept = None
|
|
else:
|
|
if torch.is_tensor(image):
|
|
feature_extractor_input = self.image_processor.postprocess(
|
|
image, output_type="pil"
|
|
)
|
|
else:
|
|
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
|
safety_checker_input = self.feature_extractor(
|
|
feature_extractor_input, return_tensors="pt"
|
|
)
|
|
image, has_nsfw_concept = self.safety_checker(
|
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
|
)
|
|
return image, has_nsfw_concept
|
|
|
|
def prepare_latents(
|
|
self, batch_size, num_channels_latents, height, width, dtype, latents=None
|
|
):
|
|
shape = (
|
|
batch_size,
|
|
num_channels_latents,
|
|
height // self.vae_scale_factor,
|
|
width // self.vae_scale_factor,
|
|
)
|
|
if latents is None:
|
|
latents = torch.randn(shape, dtype=dtype)
|
|
|
|
return latents
|
|
|
|
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
|
"""
|
|
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
|
Args:
|
|
timesteps: torch.Tensor: generate embedding vectors at these timesteps
|
|
embedding_dim: int: dimension of the embeddings to generate
|
|
dtype: data type of the generated embeddings
|
|
Returns:
|
|
embedding vectors with shape `(len(timesteps), embedding_dim)`
|
|
"""
|
|
assert len(w.shape) == 1
|
|
w = w * 1000.0
|
|
|
|
half_dim = embedding_dim // 2
|
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
|
emb = w.to(dtype)[:, None] * emb[None, :]
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
|
if embedding_dim % 2 == 1:
|
|
emb = torch.nn.functional.pad(emb, (0, 1))
|
|
assert emb.shape == (w.shape[0], embedding_dim)
|
|
return emb
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
height: Optional[int] = 512,
|
|
width: Optional[int] = 512,
|
|
guidance_scale: float = 7.5,
|
|
scheduler = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
num_inference_steps: int = 4,
|
|
lcm_origin_steps: int = 50,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
model: Optional[Dict[str, any]] = None,
|
|
seed: Optional[int] = 1234567,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
callback = None,
|
|
callback_userdata = None
|
|
):
|
|
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
if seed is not None:
|
|
torch.manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = self._encode_prompt(
|
|
prompt,
|
|
num_images_per_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
)
|
|
|
|
|
|
|
|
scheduler.set_timesteps(num_inference_steps, original_inference_steps=lcm_origin_steps)
|
|
timesteps = scheduler.timesteps
|
|
|
|
|
|
|
|
|
|
num_channels_latents = 4
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
latents,
|
|
)
|
|
latents = latents * scheduler.init_noise_sigma
|
|
|
|
|
|
bs = batch_size * num_images_per_prompt
|
|
|
|
|
|
w = torch.tensor(guidance_scale).repeat(bs)
|
|
w_embedding = self.get_w_embedding(w, embedding_dim=256)
|
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
if callback:
|
|
callback(i+1, callback_userdata)
|
|
|
|
ts = torch.full((bs,), t, dtype=torch.long)
|
|
|
|
|
|
model_pred = self.unet([latents, ts, prompt_embeds, w_embedding],share_inputs=True, share_outputs=True)[0]
|
|
|
|
|
|
latents, denoised = scheduler.step(
|
|
torch.from_numpy(model_pred), t, latents, return_dict=False
|
|
)
|
|
progress_bar.update()
|
|
|
|
|
|
|
|
vae_start = time.time()
|
|
|
|
if not output_type == "latent":
|
|
image = torch.from_numpy(self.vae_decoder(denoised / 0.18215, share_inputs=True, share_outputs=True)[0])
|
|
else:
|
|
image = denoised
|
|
|
|
print("Decoder Ended: ", time.time() - vae_start)
|
|
|
|
|
|
|
|
do_denormalize = [True] * image.shape[0]
|
|
|
|
|
|
|
|
|
|
|
|
image = self.image_processor.postprocess(
|
|
image, output_type=output_type, do_denormalize=do_denormalize
|
|
)
|
|
|
|
return image[0]
|
|
|
|
class LatentConsistencyEngineAdvanced(DiffusionPipeline):
|
|
def __init__(
|
|
self,
|
|
model="SimianLuo/LCM_Dreamshaper_v7",
|
|
tokenizer="openai/clip-vit-large-patch14",
|
|
device=["CPU", "CPU", "CPU"],
|
|
):
|
|
super().__init__()
|
|
try:
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True)
|
|
except:
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer)
|
|
self.tokenizer.save_pretrained(model)
|
|
|
|
self.core = Core()
|
|
self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')})
|
|
|
|
|
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
|
|
text_future = executor.submit(self.load_model, model, "text_encoder", device[0])
|
|
unet_future = executor.submit(self.load_model, model, "unet", device[1])
|
|
vae_de_future = executor.submit(self.load_model, model, "vae_decoder", device[2])
|
|
vae_encoder_future = executor.submit(self.load_model, model, "vae_encoder", device[2])
|
|
|
|
|
|
print("Text Device:", device[0])
|
|
self.text_encoder = text_future.result()
|
|
self._text_encoder_output = self.text_encoder.output(0)
|
|
|
|
print("Unet Device:", device[1])
|
|
self.unet = unet_future.result()
|
|
self._unet_output = self.unet.output(0)
|
|
self.infer_request = self.unet.create_infer_request()
|
|
|
|
print(f"VAE Device: {device[2]}")
|
|
self.vae_decoder = vae_de_future.result()
|
|
self.vae_encoder = vae_encoder_future.result()
|
|
self._vae_e_output = self.vae_encoder.output(0) if self.vae_encoder else None
|
|
|
|
self.infer_request_vae = self.vae_decoder.create_infer_request()
|
|
self.safety_checker = None
|
|
self.feature_extractor = None
|
|
self.vae_scale_factor = 2 ** 3
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
|
|
|
def load_model(self, model, model_name, device):
|
|
print(f"Compiling the {model_name} to {device} ...")
|
|
return self.core.compile_model(os.path.join(model, f"{model_name}.xml"), device)
|
|
|
|
def get_timesteps(self, num_inference_steps:int, strength:float, scheduler):
|
|
"""
|
|
Helper function for getting scheduler timesteps for generation
|
|
In case of image-to-image generation, it updates number of steps according to strength
|
|
|
|
Parameters:
|
|
num_inference_steps (int):
|
|
number of inference steps for generation
|
|
strength (float):
|
|
value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.
|
|
Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.
|
|
"""
|
|
|
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
|
|
|
t_start = max(num_inference_steps - init_timestep, 0)
|
|
timesteps = scheduler.timesteps[t_start:]
|
|
|
|
return timesteps, num_inference_steps - t_start
|
|
|
|
def _encode_prompt(
|
|
self,
|
|
prompt,
|
|
num_images_per_prompt,
|
|
prompt_embeds: None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
"""
|
|
|
|
if prompt_embeds is None:
|
|
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = self.tokenizer(
|
|
prompt, padding="longest", return_tensors="pt"
|
|
).input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[
|
|
-1
|
|
] and not torch.equal(text_input_ids, untruncated_ids):
|
|
removed_text = self.tokenizer.batch_decode(
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
|
|
prompt_embeds = self.text_encoder(text_input_ids, share_inputs=True, share_outputs=True)
|
|
prompt_embeds = torch.from_numpy(prompt_embeds[0])
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(
|
|
bs_embed * num_images_per_prompt, seq_len, -1
|
|
)
|
|
|
|
|
|
return prompt_embeds
|
|
|
|
def run_safety_checker(self, image, dtype):
|
|
if self.safety_checker is None:
|
|
has_nsfw_concept = None
|
|
else:
|
|
if torch.is_tensor(image):
|
|
feature_extractor_input = self.image_processor.postprocess(
|
|
image, output_type="pil"
|
|
)
|
|
else:
|
|
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
|
safety_checker_input = self.feature_extractor(
|
|
feature_extractor_input, return_tensors="pt"
|
|
)
|
|
image, has_nsfw_concept = self.safety_checker(
|
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
|
)
|
|
return image, has_nsfw_concep
|
|
|
|
def prepare_latents(
|
|
self,image,timestep,batch_size, num_channels_latents, height, width, dtype, scheduler,latents=None,
|
|
):
|
|
shape = (
|
|
batch_size,
|
|
num_channels_latents,
|
|
height // self.vae_scale_factor,
|
|
width // self.vae_scale_factor,
|
|
)
|
|
if image:
|
|
|
|
|
|
latents_shape = (1, 4, 512 // 8, 512 // 8)
|
|
noise = np.random.randn(*latents_shape).astype(np.float32)
|
|
input_image,meta = preprocess(image,512,512)
|
|
moments = self.vae_encoder(input_image)[self._vae_e_output]
|
|
mean, logvar = np.split(moments, 2, axis=1)
|
|
std = np.exp(logvar * 0.5)
|
|
latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215
|
|
noise = torch.randn(shape, dtype=dtype)
|
|
|
|
latents = scheduler.add_noise(torch.from_numpy(latents), noise, timestep)
|
|
|
|
else:
|
|
latents = torch.randn(shape, dtype=dtype)
|
|
|
|
return latents
|
|
|
|
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
|
"""
|
|
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
|
Args:
|
|
timesteps: torch.Tensor: generate embedding vectors at these timesteps
|
|
embedding_dim: int: dimension of the embeddings to generate
|
|
dtype: data type of the generated embeddings
|
|
Returns:
|
|
embedding vectors with shape `(len(timesteps), embedding_dim)`
|
|
"""
|
|
assert len(w.shape) == 1
|
|
w = w * 1000.0
|
|
|
|
half_dim = embedding_dim // 2
|
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
|
emb = w.to(dtype)[:, None] * emb[None, :]
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
|
if embedding_dim % 2 == 1:
|
|
emb = torch.nn.functional.pad(emb, (0, 1))
|
|
assert emb.shape == (w.shape[0], embedding_dim)
|
|
return emb
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
init_image: Optional[PIL.Image.Image] = None,
|
|
strength: Optional[float] = 0.8,
|
|
height: Optional[int] = 512,
|
|
width: Optional[int] = 512,
|
|
guidance_scale: float = 7.5,
|
|
scheduler = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
num_inference_steps: int = 4,
|
|
lcm_origin_steps: int = 50,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
model: Optional[Dict[str, any]] = None,
|
|
seed: Optional[int] = 1234567,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
callback = None,
|
|
callback_userdata = None
|
|
):
|
|
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
if seed is not None:
|
|
torch.manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = self._encode_prompt(
|
|
prompt,
|
|
num_images_per_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
)
|
|
|
|
|
|
|
|
|
|
latent_timestep = None
|
|
if init_image:
|
|
scheduler.set_timesteps(num_inference_steps, original_inference_steps=lcm_origin_steps)
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler)
|
|
latent_timestep = timesteps[:1]
|
|
else:
|
|
scheduler.set_timesteps(num_inference_steps, original_inference_steps=lcm_origin_steps)
|
|
timesteps = scheduler.timesteps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_channels_latents = 4
|
|
latents = self.prepare_latents(
|
|
init_image,
|
|
latent_timestep,
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
scheduler,
|
|
latents,
|
|
)
|
|
|
|
latents = latents * scheduler.init_noise_sigma
|
|
|
|
|
|
bs = batch_size * num_images_per_prompt
|
|
|
|
|
|
w = torch.tensor(guidance_scale).repeat(bs)
|
|
w_embedding = self.get_w_embedding(w, embedding_dim=256)
|
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
if callback:
|
|
callback(i+1, callback_userdata)
|
|
|
|
ts = torch.full((bs,), t, dtype=torch.long)
|
|
|
|
|
|
model_pred = self.unet([latents, ts, prompt_embeds, w_embedding],share_inputs=True, share_outputs=True)[0]
|
|
|
|
|
|
latents, denoised = scheduler.step(
|
|
torch.from_numpy(model_pred), t, latents, return_dict=False
|
|
)
|
|
progress_bar.update()
|
|
|
|
|
|
|
|
vae_start = time.time()
|
|
|
|
if not output_type == "latent":
|
|
image = torch.from_numpy(self.vae_decoder(denoised / 0.18215, share_inputs=True, share_outputs=True)[0])
|
|
else:
|
|
image = denoised
|
|
|
|
print("Decoder Ended: ", time.time() - vae_start)
|
|
|
|
|
|
|
|
do_denormalize = [True] * image.shape[0]
|
|
|
|
|
|
|
|
|
|
|
|
image = self.image_processor.postprocess(
|
|
image, output_type=output_type, do_denormalize=do_denormalize
|
|
)
|
|
|
|
return image[0]
|
|
|
|
class StableDiffusionEngineReferenceOnly(DiffusionPipeline):
|
|
def __init__(
|
|
self,
|
|
|
|
model="bes-dev/stable-diffusion-v1-4-openvino",
|
|
tokenizer="openai/clip-vit-large-patch14",
|
|
device=["CPU","CPU","CPU"]
|
|
):
|
|
|
|
try:
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(model,local_files_only=True)
|
|
except:
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer)
|
|
self.tokenizer.save_pretrained(model)
|
|
|
|
|
|
|
|
|
|
self.core = Core()
|
|
self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')})
|
|
|
|
|
|
print("Text Device:",device[0])
|
|
self.text_encoder = self.core.compile_model(os.path.join(model, "text_encoder.xml"), device[0])
|
|
|
|
self._text_encoder_output = self.text_encoder.output(0)
|
|
|
|
|
|
print("unet_w Device:",device[1])
|
|
self.unet_w = self.core.compile_model(os.path.join(model, "unet_reference_write.xml"), device[1])
|
|
self._unet_w_output = self.unet_w.output(0)
|
|
self.latent_shape = tuple(self.unet_w.inputs[0].shape)[1:]
|
|
|
|
print("unet_r Device:",device[1])
|
|
self.unet_r = self.core.compile_model(os.path.join(model, "unet_reference_read.xml"), device[1])
|
|
self._unet_r_output = self.unet_r.output(0)
|
|
|
|
print("Vae Device:",device[2])
|
|
|
|
self.vae_decoder = self.core.compile_model(os.path.join(model, "vae_decoder.xml"), device[2])
|
|
|
|
|
|
|
|
self.vae_encoder = self.core.compile_model(os.path.join(model, "vae_encoder.xml"), device[2])
|
|
|
|
self.init_image_shape = tuple(self.vae_encoder.inputs[0].shape)[2:]
|
|
|
|
self._vae_d_output = self.vae_decoder.output(0)
|
|
self._vae_e_output = self.vae_encoder.output(0) if self.vae_encoder is not None else None
|
|
|
|
self.height = self.unet_w.input(0).shape[2] * 8
|
|
self.width = self.unet_w.input(0).shape[3] * 8
|
|
|
|
|
|
|
|
def __call__(
|
|
self,
|
|
prompt,
|
|
image = None,
|
|
negative_prompt=None,
|
|
scheduler=None,
|
|
strength = 1.0,
|
|
num_inference_steps = 32,
|
|
guidance_scale = 7.5,
|
|
eta = 0.0,
|
|
create_gif = False,
|
|
model = None,
|
|
callback = None,
|
|
callback_userdata = None
|
|
):
|
|
|
|
text_input = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="np",
|
|
)
|
|
text_embeddings = self.text_encoder(text_input.input_ids)[self._text_encoder_output]
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
if do_classifier_free_guidance:
|
|
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""]
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
tokens_uncond = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
return_tensors="np"
|
|
)
|
|
uncond_embeddings = self.text_encoder(tokens_uncond.input_ids)[self._text_encoder_output]
|
|
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
|
|
|
|
|
|
accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
extra_set_kwargs = {}
|
|
|
|
if accepts_offset:
|
|
extra_set_kwargs["offset"] = 1
|
|
|
|
scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
|
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler)
|
|
latent_timestep = timesteps[:1]
|
|
|
|
ref_image = self.prepare_image(
|
|
image=image,
|
|
width=512,
|
|
height=512,
|
|
)
|
|
|
|
latents, meta = self.prepare_latents(None, latent_timestep, scheduler)
|
|
|
|
ref_image_latents = self.ov_prepare_ref_latents(ref_image)
|
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
if create_gif:
|
|
frames = []
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)):
|
|
if callback:
|
|
callback(i, callback_userdata)
|
|
|
|
|
|
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
|
|
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
|
|
noise = randn_tensor(
|
|
ref_image_latents.shape
|
|
)
|
|
|
|
ref_xt = scheduler.add_noise(
|
|
torch.from_numpy(ref_image_latents),
|
|
noise,
|
|
t.reshape(
|
|
1,
|
|
),
|
|
).numpy()
|
|
ref_xt = np.concatenate([ref_xt] * 2) if do_classifier_free_guidance else ref_xt
|
|
ref_xt = scheduler.scale_model_input(ref_xt, t)
|
|
|
|
|
|
result_w_dict = self.unet_w([
|
|
ref_xt,
|
|
t,
|
|
text_embeddings
|
|
])
|
|
down_0_attn0 = result_w_dict["/unet/down_blocks.0/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
|
down_0_attn1 = result_w_dict["/unet/down_blocks.0/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
|
down_1_attn0 = result_w_dict["/unet/down_blocks.1/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
|
down_1_attn1 = result_w_dict["/unet/down_blocks.1/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
|
down_2_attn0 = result_w_dict["/unet/down_blocks.2/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
|
down_2_attn1 = result_w_dict["/unet/down_blocks.2/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
|
mid_attn0 = result_w_dict["/unet/mid_block/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
|
up_1_attn0 = result_w_dict["/unet/up_blocks.1/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
|
up_1_attn1 = result_w_dict["/unet/up_blocks.1/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
|
up_1_attn2 = result_w_dict["/unet/up_blocks.1/attentions.2/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
|
up_2_attn0 = result_w_dict["/unet/up_blocks.2/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
|
up_2_attn1 = result_w_dict["/unet/up_blocks.2/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
|
up_2_attn2 = result_w_dict["/unet/up_blocks.2/attentions.2/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
|
up_3_attn0 = result_w_dict["/unet/up_blocks.3/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
|
up_3_attn1 = result_w_dict["/unet/up_blocks.3/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
|
up_3_attn2 = result_w_dict["/unet/up_blocks.3/attentions.2/transformer_blocks.0/norm1/LayerNormalization_output_0"]
|
|
|
|
|
|
noise_pred = self.unet_r([
|
|
latent_model_input, t, text_embeddings, down_0_attn0, down_0_attn1, down_1_attn0,
|
|
down_1_attn1, down_2_attn0, down_2_attn1, mid_attn0, up_1_attn0, up_1_attn1, up_1_attn2,
|
|
up_2_attn0, up_2_attn1, up_2_attn2, up_3_attn0, up_3_attn1, up_3_attn2
|
|
])[0]
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1]
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
|
|
latents = scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)["prev_sample"].numpy()
|
|
|
|
if create_gif:
|
|
frames.append(latents)
|
|
|
|
if callback:
|
|
callback(num_inference_steps, callback_userdata)
|
|
|
|
|
|
|
|
image = self.vae_decoder(latents)[self._vae_d_output]
|
|
|
|
image = self.postprocess_image(image, meta)
|
|
|
|
if create_gif:
|
|
gif_folder=os.path.join(model,"../../../gif")
|
|
if not os.path.exists(gif_folder):
|
|
os.makedirs(gif_folder)
|
|
for i in range(0,len(frames)):
|
|
image = self.vae_decoder(frames[i])[self._vae_d_output]
|
|
image = self.postprocess_image(image, meta)
|
|
output = gif_folder + "/" + str(i).zfill(3) +".png"
|
|
cv2.imwrite(output, image)
|
|
with open(os.path.join(gif_folder, "prompt.json"), "w") as file:
|
|
json.dump({"prompt": prompt}, file)
|
|
frames_image = [Image.open(image) for image in glob.glob(f"{gif_folder}/*.png")]
|
|
frame_one = frames_image[0]
|
|
gif_file=os.path.join(gif_folder,"stable_diffusion.gif")
|
|
frame_one.save(gif_file, format="GIF", append_images=frames_image, save_all=True, duration=100, loop=0)
|
|
|
|
return image
|
|
|
|
def ov_prepare_ref_latents(self, refimage, vae_scaling_factor=0.18215):
|
|
|
|
|
|
|
|
moments = self.vae_encoder(refimage)[0]
|
|
mean, logvar = np.split(moments, 2, axis=1)
|
|
std = np.exp(logvar * 0.5)
|
|
ref_image_latents = (mean + std * np.random.randn(*mean.shape))
|
|
ref_image_latents = vae_scaling_factor * ref_image_latents
|
|
|
|
|
|
|
|
|
|
return ref_image_latents
|
|
|
|
def prepare_latents(self, image:PIL.Image.Image = None, latent_timestep:torch.Tensor = None, scheduler = LMSDiscreteScheduler):
|
|
"""
|
|
Function for getting initial latents for starting generation
|
|
|
|
Parameters:
|
|
image (PIL.Image.Image, *optional*, None):
|
|
Input image for generation, if not provided randon noise will be used as starting point
|
|
latent_timestep (torch.Tensor, *optional*, None):
|
|
Predicted by scheduler initial step for image generation, required for latent image mixing with nosie
|
|
Returns:
|
|
latents (np.ndarray):
|
|
Image encoded in latent space
|
|
"""
|
|
latents_shape = (1, 4, self.height // 8, self.width // 8)
|
|
|
|
noise = np.random.randn(*latents_shape).astype(np.float32)
|
|
if image is None:
|
|
|
|
|
|
if isinstance(scheduler, LMSDiscreteScheduler):
|
|
|
|
noise = noise * scheduler.sigmas[0].numpy()
|
|
return noise, {}
|
|
elif isinstance(scheduler, EulerDiscreteScheduler):
|
|
|
|
noise = noise * scheduler.sigmas.max().numpy()
|
|
return noise, {}
|
|
else:
|
|
return noise, {}
|
|
input_image, meta = preprocess(image,self.height,self.width)
|
|
|
|
moments = self.vae_encoder(input_image)[self._vae_e_output]
|
|
|
|
mean, logvar = np.split(moments, 2, axis=1)
|
|
|
|
std = np.exp(logvar * 0.5)
|
|
latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215
|
|
|
|
|
|
latents = scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy()
|
|
return latents, meta
|
|
|
|
def postprocess_image(self, image:np.ndarray, meta:Dict):
|
|
"""
|
|
Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initila image size (if required),
|
|
normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format
|
|
|
|
Parameters:
|
|
image (np.ndarray):
|
|
Generated image
|
|
meta (Dict):
|
|
Metadata obtained on latents preparing step, can be empty
|
|
output_type (str, *optional*, pil):
|
|
Output format for result, can be pil or numpy
|
|
Returns:
|
|
image (List of np.ndarray or PIL.Image.Image):
|
|
Postprocessed images
|
|
|
|
if "src_height" in meta:
|
|
orig_height, orig_width = meta["src_height"], meta["src_width"]
|
|
image = [cv2.resize(img, (orig_width, orig_height))
|
|
for img in image]
|
|
|
|
return image
|
|
"""
|
|
if "padding" in meta:
|
|
pad = meta["padding"]
|
|
(_, end_h), (_, end_w) = pad[1:3]
|
|
h, w = image.shape[2:]
|
|
|
|
unpad_h = h - end_h
|
|
unpad_w = w - end_w
|
|
image = image[:, :, :unpad_h, :unpad_w]
|
|
image = np.clip(image / 2 + 0.5, 0, 1)
|
|
image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8)
|
|
|
|
|
|
|
|
if "src_height" in meta:
|
|
orig_height, orig_width = meta["src_height"], meta["src_width"]
|
|
image = cv2.resize(image, (orig_width, orig_height))
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_timesteps(self, num_inference_steps:int, strength:float, scheduler):
|
|
"""
|
|
Helper function for getting scheduler timesteps for generation
|
|
In case of image-to-image generation, it updates number of steps according to strength
|
|
|
|
Parameters:
|
|
num_inference_steps (int):
|
|
number of inference steps for generation
|
|
strength (float):
|
|
value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.
|
|
Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.
|
|
"""
|
|
|
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
|
|
|
t_start = max(num_inference_steps - init_timestep, 0)
|
|
timesteps = scheduler.timesteps[t_start:]
|
|
|
|
return timesteps, num_inference_steps - t_start
|
|
def prepare_image(
|
|
self,
|
|
image,
|
|
width,
|
|
height,
|
|
do_classifier_free_guidance=False,
|
|
guess_mode=False,
|
|
):
|
|
if not isinstance(image, np.ndarray):
|
|
if isinstance(image, PIL.Image.Image):
|
|
image = [image]
|
|
|
|
if isinstance(image[0], PIL.Image.Image):
|
|
images = []
|
|
|
|
for image_ in image:
|
|
image_ = image_.convert("RGB")
|
|
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
|
|
image_ = np.array(image_)
|
|
image_ = image_[None, :]
|
|
images.append(image_)
|
|
|
|
image = images
|
|
|
|
image = np.concatenate(image, axis=0)
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = (image - 0.5) / 0.5
|
|
image = image.transpose(0, 3, 1, 2)
|
|
elif isinstance(image[0], np.ndarray):
|
|
image = np.concatenate(image, dim=0)
|
|
|
|
if do_classifier_free_guidance and not guess_mode:
|
|
image = np.concatenate([image] * 2)
|
|
|
|
return image
|
|
|
|
def print_npu_turbo_art():
|
|
random_number = random.randint(1, 3)
|
|
|
|
if random_number == 1:
|
|
print(" ")
|
|
print(" ___ ___ ___ ___ ___ ___ ")
|
|
print(" /\ \ /\ \ /\ \ /\ \ /\ \ _____ /\ \ ")
|
|
print(" \:\ \ /::\ \ \:\ \ ___ \:\ \ /::\ \ /::\ \ /::\ \ ")
|
|
print(" \:\ \ /:/\:\__\ \:\ \ /\__\ \:\ \ /:/\:\__\ /:/\:\ \ /:/\:\ \ ")
|
|
print(" _____\:\ \ /:/ /:/ / ___ \:\ \ /:/ / ___ \:\ \ /:/ /:/ / /:/ /::\__\ /:/ \:\ \ ")
|
|
print(" /::::::::\__\ /:/_/:/ / /\ \ \:\__\ /:/__/ /\ \ \:\__\ /:/_/:/__/___ /:/_/:/\:|__| /:/__/ \:\__\ ")
|
|
print(" \:\~~\~~\/__/ \:\/:/ / \:\ \ /:/ / /::\ \ \:\ \ /:/ / \:\/:::::/ / \:\/:/ /:/ / \:\ \ /:/ / ")
|
|
print(" \:\ \ \::/__/ \:\ /:/ / /:/\:\ \ \:\ /:/ / \::/~~/~~~~ \::/_/:/ / \:\ /:/ / ")
|
|
print(" \:\ \ \:\ \ \:\/:/ / \/__\:\ \ \:\/:/ / \:\~~\ \:\/:/ / \:\/:/ / ")
|
|
print(" \:\__\ \:\__\ \::/ / \:\__\ \::/ / \:\__\ \::/ / \::/ / ")
|
|
print(" \/__/ \/__/ \/__/ \/__/ \/__/ \/__/ \/__/ \/__/ ")
|
|
print(" ")
|
|
elif random_number == 2:
|
|
print(" _ _ ____ _ _ _____ _ _ ____ ____ ___ ")
|
|
print("| \ | | | _ \ | | | | |_ _| | | | | | _ \ | __ ) / _ \ ")
|
|
print("| \| | | |_) | | | | | | | | | | | | |_) | | _ \ | | | |")
|
|
print("| |\ | | __/ | |_| | | | | |_| | | _ < | |_) | | |_| |")
|
|
print("|_| \_| |_| \___/ |_| \___/ |_| \_\ |____/ \___/ ")
|
|
print(" ")
|
|
else:
|
|
print("")
|
|
print(" ) ( ( ) ")
|
|
print(" ( /( )\ ) * ) )\ ) ( ( /( ")
|
|
print(" )\()) (()/( ( ` ) /( ( (()/( ( )\ )\()) ")
|
|
print("((_)\ /(_)) )\ ( )(_)) )\ /(_)) )((_) ((_)\ ")
|
|
print(" _((_) (_)) _ ((_) (_(_()) _ ((_) (_)) ((_)_ ((_) ")
|
|
print("| \| | | _ \ | | | | |_ _| | | | | | _ \ | _ ) / _ \ ")
|
|
print("| .` | | _/ | |_| | | | | |_| | | / | _ \ | (_) | ")
|
|
print("|_|\_| |_| \___/ |_| \___/ |_|_\ |___/ \___/ ")
|
|
print(" ")
|
|
|
|
|
|
|
|
|