|
from enum import Enum
|
|
from PIL import Image
|
|
from typing import Any, Optional, Union
|
|
|
|
from constants import LCM_DEFAULT_MODEL, LCM_DEFAULT_MODEL_OPENVINO
|
|
from paths import FastStableDiffusionPaths
|
|
from pydantic import BaseModel
|
|
|
|
|
|
class LCMLora(BaseModel):
|
|
base_model_id: str = "Lykon/dreamshaper-8"
|
|
lcm_lora_id: str = "latent-consistency/lcm-lora-sdv1-5"
|
|
|
|
|
|
class DiffusionTask(str, Enum):
|
|
"""Diffusion task types"""
|
|
|
|
text_to_image = "text_to_image"
|
|
image_to_image = "image_to_image"
|
|
|
|
|
|
class Lora(BaseModel):
|
|
models_dir: str = FastStableDiffusionPaths.get_lora_models_path()
|
|
path: Optional[Any] = None
|
|
weight: Optional[float] = 0.5
|
|
fuse: bool = True
|
|
enabled: bool = False
|
|
|
|
|
|
class ControlNetSetting(BaseModel):
|
|
adapter_path: Optional[str] = None
|
|
conditioning_scale: float = 0.5
|
|
enabled: bool = False
|
|
_control_image: Image = None
|
|
|
|
|
|
class GGUFModel(BaseModel):
|
|
gguf_models: str = FastStableDiffusionPaths.get_gguf_models_path()
|
|
diffusion_path: Optional[str] = None
|
|
clip_path: Optional[str] = None
|
|
t5xxl_path: Optional[str] = None
|
|
vae_path: Optional[str] = None
|
|
|
|
|
|
class LCMDiffusionSetting(BaseModel):
|
|
lcm_model_id: str = LCM_DEFAULT_MODEL
|
|
openvino_lcm_model_id: str = LCM_DEFAULT_MODEL_OPENVINO
|
|
use_offline_model: bool = False
|
|
use_lcm_lora: bool = False
|
|
lcm_lora: Optional[LCMLora] = LCMLora()
|
|
use_tiny_auto_encoder: bool = False
|
|
use_openvino: bool = False
|
|
prompt: str = ""
|
|
negative_prompt: str = ""
|
|
init_image: Any = None
|
|
strength: Optional[float] = 0.6
|
|
image_height: Optional[int] = 512
|
|
image_width: Optional[int] = 512
|
|
inference_steps: Optional[int] = 1
|
|
guidance_scale: Optional[float] = 1
|
|
clip_skip: Optional[int] = 1
|
|
token_merging: Optional[float] = 0
|
|
number_of_images: Optional[int] = 1
|
|
seed: Optional[int] = 123123
|
|
use_seed: bool = False
|
|
use_safety_checker: bool = False
|
|
diffusion_task: str = DiffusionTask.text_to_image.value
|
|
lora: Optional[Lora] = Lora()
|
|
controlnet: Optional[Union[ControlNetSetting, list[ControlNetSetting]]] = None
|
|
dirs: dict = {
|
|
"controlnet": FastStableDiffusionPaths.get_controlnet_models_path(),
|
|
"lora": FastStableDiffusionPaths.get_lora_models_path(),
|
|
}
|
|
rebuild_pipeline: bool = False
|
|
use_gguf_model: bool = False
|
|
gguf_model: Optional[GGUFModel] = GGUFModel()
|
|
|