Spaces:
Running
Running
from app_settings import AppSettings | |
from utils import show_system_info | |
import constants | |
from argparse import ArgumentParser | |
from context import Context | |
from constants import APP_VERSION, LCM_DEFAULT_MODEL_OPENVINO | |
from models.interface_types import InterfaceType | |
from constants import DEVICE | |
from state import get_settings | |
import traceback | |
from fastapi import FastAPI,Body | |
import uvicorn | |
import json | |
import logging | |
from PIL import Image | |
import time | |
from diffusers.utils import load_image | |
import base64 | |
import io | |
from datetime import datetime | |
from typing import Any | |
from backend.models.lcmdiffusion_setting import DiffusionTask | |
from frontend.utils import is_reshape_required | |
from concurrent.futures import ThreadPoolExecutor | |
context = Context(InterfaceType.WEBUI) | |
previous_width = 0 | |
previous_height = 0 | |
previous_model_id = "" | |
previous_num_of_images = 0 | |
parser = ArgumentParser(description=f"FAST SD CPU {constants.APP_VERSION}") | |
parser.add_argument( "-s", "--share", action="store_true", help="Create sharable link(Web UI)", required=False,) | |
group = parser.add_mutually_exclusive_group(required=False) | |
group.add_argument( "-g", "--gui", action="store_true", help="Start desktop GUI",) | |
group.add_argument( "-w", "--webui", action="store_true", help="Start Web UI",) | |
group.add_argument( "-r", "--realtime", action="store_true", help="Start realtime inference UI(experimental)",) | |
group.add_argument( "-v", "--version", action="store_true", help="Version",) | |
parser.add_argument( "--lcm_model_id", type=str, help="Model ID or path,Default SimianLuo/LCM_Dreamshaper_v7", default="advokat/UNLIMITED_PORN" #"SimianLuo/LCM_Dreamshaper_v7", | |
) | |
parser.add_argument( "--prompt", type=str, help="Describe the image you want to generate",) | |
parser.add_argument( "--image_height", type=int, help="Height of the image", default=512,) | |
parser.add_argument( "--image_width", type=int, help="Width of the image", default=512,) | |
parser.add_argument( "--inference_steps", type=int, help="Number of steps,default : 4", default=4,) | |
parser.add_argument( "--guidance_scale", type=int, help="Guidance scale,default : 1.0", default=1.0,) | |
parser.add_argument( "--number_of_images", type=int, help="Number of images to generate ,default : 1", default=1,) | |
parser.add_argument( "--seed", type=int, help="Seed,default : -1 (disabled) ", default=-1,) | |
parser.add_argument( "--use_openvino", action="store_true", help="Use OpenVINO model",) | |
parser.add_argument( "--use_offline_model", action="store_true", help="Use offline model",) | |
parser.add_argument( "--use_safety_checker", action="store_false", help="Use safety checker",) | |
parser.add_argument( "--use_lcm_lora", action="store_true", help="Use LCM-LoRA",) | |
parser.add_argument( "--base_model_id", type=str, help="LCM LoRA base model ID,Default Lykon/dreamshaper-8", default="Lykon/dreamshaper-8",) | |
parser.add_argument( "--lcm_lora_id", type=str, help="LCM LoRA model ID,Default latent-consistency/lcm-lora-sdv1-5", default="advokat/Illustrious_x_Pony") | |
parser.add_argument( "-i", "--interactive", action="store_true", help="Interactive CLI mode",) | |
parser.add_argument( "--use_tiny_auto_encoder", action="store_true", help="Use tiny auto encoder for SD (TAESD)",) | |
args = parser.parse_args() | |
if args.version: | |
print(APP_VERSION) | |
exit() | |
parser.print_help() | |
show_system_info() | |
print(f"Using device : {constants.DEVICE}") | |
app_settings = get_settings() | |
print(f"Found {len(app_settings.lcm_models)} LCM models in config/lcm-models.txt") | |
print( f"Found {len(app_settings.stable_diffsuion_models)} stable diffusion models in config/stable-diffusion-models.txt") | |
print( f"Found {len(app_settings.lcm_lora_models)} LCM-LoRA models in config/lcm-lora-models.txt") | |
print( f"Found {len(app_settings.openvino_lcm_models)} OpenVINO LCM models in config/openvino-lcm-models.txt") | |
app_settings.settings.lcm_diffusion_setting.use_openvino = True | |
from frontend.webui.ui import start_webui | |
print("Starting web UI mode") | |
start_webui( args.share,) | |
# app = FastAPI(name="mutilParam") | |
# print("我执行了") | |
# @app.get("/") | |
# def root(): | |
# return {"API": "hello"} | |
# @app.post("/img2img") | |
# async def predict(prompt=Body(...),imgbase64data=Body(...),negative_prompt=Body(None),userId=Body(None)): | |
# MAX_QUEUE_SIZE = 4 | |
# start = time.time() | |
# print("参数",imgbase64data,prompt) | |
# image_data = base64.b64decode(imgbase64data) | |
# image1 = Image.open(io.BytesIO(image_data)) | |
# w, h = image1.size | |
# newW = 512 | |
# newH = int(h * newW / w) | |
# img = image1.resize((newW, newH)) | |
# end1 = time.time() | |
# now = datetime.now() | |
# print(now) | |
# print("图像:", img.size) | |
# print("加载管道:", end1 - start) | |
# global previous_height, previous_width, previous_model_id, previous_num_of_images, app_settings | |
# app_settings.settings.lcm_diffusion_setting.prompt = prompt | |
# app_settings.settings.lcm_diffusion_setting.negative_prompt = negative_prompt | |
# app_settings.settings.lcm_diffusion_setting.init_image = image1 | |
# app_settings.settings.lcm_diffusion_setting.strength = 0.6 | |
# app_settings.settings.lcm_diffusion_setting.diffusion_task = ( | |
# DiffusionTask.image_to_image.value | |
# ) | |
# model_id = app_settings.settings.lcm_diffusion_setting.openvino_lcm_model_id | |
# reshape = False | |
# app_settings.settings.lcm_diffusion_setting.image_height=newH | |
# image_width = app_settings.settings.lcm_diffusion_setting.image_width | |
# image_height = app_settings.settings.lcm_diffusion_setting.image_height | |
# num_images = app_settings.settings.lcm_diffusion_setting.number_of_images | |
# reshape = is_reshape_required( | |
# previous_width, | |
# image_width, | |
# previous_height, | |
# image_height, | |
# previous_model_id, | |
# model_id, | |
# previous_num_of_images, | |
# num_images, | |
# ) | |
# with ThreadPoolExecutor(max_workers=1) as executor: | |
# future = executor.submit( | |
# context.generate_text_to_image, | |
# app_settings.settings, | |
# reshape, | |
# DEVICE, | |
# ) | |
# images = future.result() | |
# previous_width = image_width | |
# previous_height = image_height | |
# previous_model_id = model_id | |
# previous_num_of_images = num_images | |
# output_image = images[0] | |
# end2 = time.time() | |
# print("测试",output_image) | |
# print("s生成完成:", end2 - end1) | |
# # 将图片对象转换为bytes | |
# image_data = io.BytesIO() | |
# # 将图像保存到BytesIO对象中,格式为JPEG | |
# output_image.save(image_data, format='JPEG') | |
# # 将BytesIO对象的内容转换为字节串 | |
# image_data_bytes = image_data.getvalue() | |
# output_image_base64 = base64.b64encode(image_data_bytes).decode('utf-8') | |
# print("完成的图片:", output_image_base64) | |
# return output_image_base64 | |
# @app.post("/predict") | |
# async def predict(prompt=Body(...)): | |
# return f"您好,{prompt}" | |