Spaces:
Running
Running
File size: 7,193 Bytes
360d274 17e6751 44a51c4 f0022eb 59dbc3e e646088 59dbc3e e646088 59dbc3e 360d274 17e6751 e646088 44a51c4 360d274 e646088 f0022eb 44a51c4 f0022eb 44a51c4 f0022eb 44a51c4 f0022eb 44a51c4 f0022eb 44a51c4 f0022eb 44a51c4 f0022eb 44a51c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
from app_settings import AppSettings
from utils import show_system_info
import constants
from argparse import ArgumentParser
from context import Context
from constants import APP_VERSION, LCM_DEFAULT_MODEL_OPENVINO
from models.interface_types import InterfaceType
from constants import DEVICE
from state import get_settings
import traceback
from fastapi import FastAPI,Body
import uvicorn
import json
import logging
from PIL import Image
import time
from diffusers.utils import load_image
import base64
import io
from datetime import datetime
from typing import Any
from backend.models.lcmdiffusion_setting import DiffusionTask
from frontend.utils import is_reshape_required
from concurrent.futures import ThreadPoolExecutor
context = Context(InterfaceType.WEBUI)
previous_width = 0
previous_height = 0
previous_model_id = ""
previous_num_of_images = 0
parser = ArgumentParser(description=f"FAST SD CPU {constants.APP_VERSION}")
parser.add_argument( "-s", "--share", action="store_true", help="Create sharable link(Web UI)", required=False,)
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument( "-g", "--gui", action="store_true", help="Start desktop GUI",)
group.add_argument( "-w", "--webui", action="store_true", help="Start Web UI",)
group.add_argument( "-r", "--realtime", action="store_true", help="Start realtime inference UI(experimental)",)
group.add_argument( "-v", "--version", action="store_true", help="Version",)
parser.add_argument( "--lcm_model_id", type=str, help="Model ID or path,Default SimianLuo/LCM_Dreamshaper_v7", default="advokat/UNLIMITED_PORN" #"SimianLuo/LCM_Dreamshaper_v7",
)
parser.add_argument( "--prompt", type=str, help="Describe the image you want to generate",)
parser.add_argument( "--image_height", type=int, help="Height of the image", default=512,)
parser.add_argument( "--image_width", type=int, help="Width of the image", default=512,)
parser.add_argument( "--inference_steps", type=int, help="Number of steps,default : 4", default=4,)
parser.add_argument( "--guidance_scale", type=int, help="Guidance scale,default : 1.0", default=1.0,)
parser.add_argument( "--number_of_images", type=int, help="Number of images to generate ,default : 1", default=1,)
parser.add_argument( "--seed", type=int, help="Seed,default : -1 (disabled) ", default=-1,)
parser.add_argument( "--use_openvino", action="store_true", help="Use OpenVINO model",)
parser.add_argument( "--use_offline_model", action="store_true", help="Use offline model",)
parser.add_argument( "--use_safety_checker", action="store_false", help="Use safety checker",)
parser.add_argument( "--use_lcm_lora", action="store_true", help="Use LCM-LoRA",)
parser.add_argument( "--base_model_id", type=str, help="LCM LoRA base model ID,Default Lykon/dreamshaper-8", default="Lykon/dreamshaper-8",)
parser.add_argument( "--lcm_lora_id", type=str, help="LCM LoRA model ID,Default latent-consistency/lcm-lora-sdv1-5", default="advokat/Illustrious_x_Pony")
parser.add_argument( "-i", "--interactive", action="store_true", help="Interactive CLI mode",)
parser.add_argument( "--use_tiny_auto_encoder", action="store_true", help="Use tiny auto encoder for SD (TAESD)",)
args = parser.parse_args()
if args.version:
print(APP_VERSION)
exit()
parser.print_help()
show_system_info()
print(f"Using device : {constants.DEVICE}")
app_settings = get_settings()
print(f"Found {len(app_settings.lcm_models)} LCM models in config/lcm-models.txt")
print( f"Found {len(app_settings.stable_diffsuion_models)} stable diffusion models in config/stable-diffusion-models.txt")
print( f"Found {len(app_settings.lcm_lora_models)} LCM-LoRA models in config/lcm-lora-models.txt")
print( f"Found {len(app_settings.openvino_lcm_models)} OpenVINO LCM models in config/openvino-lcm-models.txt")
app_settings.settings.lcm_diffusion_setting.use_openvino = True
from frontend.webui.ui import start_webui
print("Starting web UI mode")
start_webui( args.share,)
# app = FastAPI(name="mutilParam")
# print("我执行了")
# @app.get("/")
# def root():
# return {"API": "hello"}
# @app.post("/img2img")
# async def predict(prompt=Body(...),imgbase64data=Body(...),negative_prompt=Body(None),userId=Body(None)):
# MAX_QUEUE_SIZE = 4
# start = time.time()
# print("参数",imgbase64data,prompt)
# image_data = base64.b64decode(imgbase64data)
# image1 = Image.open(io.BytesIO(image_data))
# w, h = image1.size
# newW = 512
# newH = int(h * newW / w)
# img = image1.resize((newW, newH))
# end1 = time.time()
# now = datetime.now()
# print(now)
# print("图像:", img.size)
# print("加载管道:", end1 - start)
# global previous_height, previous_width, previous_model_id, previous_num_of_images, app_settings
# app_settings.settings.lcm_diffusion_setting.prompt = prompt
# app_settings.settings.lcm_diffusion_setting.negative_prompt = negative_prompt
# app_settings.settings.lcm_diffusion_setting.init_image = image1
# app_settings.settings.lcm_diffusion_setting.strength = 0.6
# app_settings.settings.lcm_diffusion_setting.diffusion_task = (
# DiffusionTask.image_to_image.value
# )
# model_id = app_settings.settings.lcm_diffusion_setting.openvino_lcm_model_id
# reshape = False
# app_settings.settings.lcm_diffusion_setting.image_height=newH
# image_width = app_settings.settings.lcm_diffusion_setting.image_width
# image_height = app_settings.settings.lcm_diffusion_setting.image_height
# num_images = app_settings.settings.lcm_diffusion_setting.number_of_images
# reshape = is_reshape_required(
# previous_width,
# image_width,
# previous_height,
# image_height,
# previous_model_id,
# model_id,
# previous_num_of_images,
# num_images,
# )
# with ThreadPoolExecutor(max_workers=1) as executor:
# future = executor.submit(
# context.generate_text_to_image,
# app_settings.settings,
# reshape,
# DEVICE,
# )
# images = future.result()
# previous_width = image_width
# previous_height = image_height
# previous_model_id = model_id
# previous_num_of_images = num_images
# output_image = images[0]
# end2 = time.time()
# print("测试",output_image)
# print("s生成完成:", end2 - end1)
# # 将图片对象转换为bytes
# image_data = io.BytesIO()
# # 将图像保存到BytesIO对象中,格式为JPEG
# output_image.save(image_data, format='JPEG')
# # 将BytesIO对象的内容转换为字节串
# image_data_bytes = image_data.getvalue()
# output_image_base64 = base64.b64encode(image_data_bytes).decode('utf-8')
# print("完成的图片:", output_image_base64)
# return output_image_base64
# @app.post("/predict")
# async def predict(prompt=Body(...)):
# return f"您好,{prompt}"
|