Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,72 +1,105 @@
|
|
1 |
-
import
|
2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
-
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
)
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
messages.append({"role": "user", "content": val[0]})
|
25 |
-
if val[1]:
|
26 |
-
messages.append({"role": "assistant", "content": val[1]})
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
title="🤖 Wiser AI Assistant",
|
51 |
-
description="Your smart manufacturing assistant powered by Wiser Machines. Ask me anything about automation, productivity, factory operations, or how Wiser can help!",
|
52 |
-
additional_inputs=[
|
53 |
-
gr.Textbox(value="You are Wiser, an AI assistant specializing in smart manufacturing and factory automation. Respond clearly, concisely, and use real-world manufacturing examples when needed.", label="System message"),
|
54 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
55 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
56 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
57 |
-
],
|
58 |
)
|
59 |
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
1 |
+
from sqlalchemy import create_engine, Table, Column, String, Integer, Float, Text, TIMESTAMP, MetaData
|
2 |
+
from sqlalchemy.dialects.postgresql import UUID
|
3 |
+
from sqlalchemy import text
|
4 |
+
from llama_index.core import SQLDatabase
|
5 |
+
from llama_index.core.query_engine import NLSQLTableQueryEngine
|
6 |
+
from llama_index.llms.huggingface import HuggingFaceLLM
|
7 |
+
import logging
|
8 |
|
9 |
+
# Set up logging
|
10 |
+
logging.basicConfig(level=logging.DEBUG)
|
11 |
+
logger = logging.getLogger(__name__)
|
|
|
12 |
|
13 |
+
# PostgreSQL DB connection (converted from JDBC)
|
14 |
+
engine = create_engine("postgresql+psycopg2://postgres:password@localhost:5434/postgres")
|
15 |
|
16 |
+
metadata_obj = MetaData()
|
17 |
|
18 |
+
# Define the machine_current_log table
|
19 |
+
machine_current_log_table = Table(
|
20 |
+
"machine_current_log",
|
21 |
+
metadata_obj,
|
22 |
+
Column("mac", Text, primary_key=True),
|
23 |
+
Column("created_at", TIMESTAMP(timezone=True), primary_key=True),
|
24 |
+
Column("CT1", Float),
|
25 |
+
Column("CT2", Float),
|
26 |
+
Column("CT3", Float),
|
27 |
+
Column("CT_Avg", Float),
|
28 |
+
Column("total_current", Float),
|
29 |
+
Column("state", Text),
|
30 |
+
Column("state_duration", Integer),
|
31 |
+
Column("fault_status", Text),
|
32 |
+
Column("fw_version", Text),
|
33 |
+
Column("machineId", UUID),
|
34 |
+
Column("hi", Text),
|
35 |
+
)
|
36 |
|
37 |
+
# Create the table
|
38 |
+
metadata_obj.create_all(engine)
|
|
|
|
|
|
|
39 |
|
40 |
+
# Convert to TimescaleDB hypertable
|
41 |
+
with engine.connect() as conn:
|
42 |
+
conn.execute(text("SELECT create_hypertable('machine_current_log', 'created_at', if_not_exists => TRUE);"))
|
43 |
+
print("TimescaleDB hypertable created")
|
44 |
+
conn.commit()
|
45 |
|
46 |
+
# Query 1: Get all MAC addresses
|
47 |
+
print("\nQuerying all MAC addresses:")
|
48 |
+
with engine.connect() as con:
|
49 |
+
rows = con.execute(text("SELECT mac from machine_current_log"))
|
50 |
+
for row in rows:
|
51 |
+
print(row)
|
52 |
|
53 |
+
# Query 2: Get all data and count
|
54 |
+
print("\nQuerying all data and count:")
|
55 |
+
stmt = text("""
|
56 |
+
SELECT mac, created_at, CT1, CT2, CT3, CT_Avg,
|
57 |
+
total_current, state, state_duration, fault_status,
|
58 |
+
fw_version, machineId
|
59 |
+
FROM machine_current_log
|
60 |
+
""")
|
61 |
|
62 |
+
with engine.connect() as connection:
|
63 |
+
print("hello")
|
64 |
+
count_stmt = text("SELECT COUNT(*) FROM machine_current_log")
|
65 |
+
count = connection.execute(count_stmt).scalar()
|
66 |
+
print(f"Total number of rows in table: {count}")
|
67 |
+
results = connection.execute(stmt).fetchall()
|
68 |
+
print(results)
|
69 |
|
70 |
+
# Set up LlamaIndex natural language querying
|
71 |
+
sql_database = SQLDatabase(engine)
|
72 |
|
73 |
+
llm = HuggingFaceLLM(
|
74 |
+
model_name="HuggingFaceH4/zephyr-7b-beta",
|
75 |
+
context_window=2048,
|
76 |
+
max_new_tokens=256,
|
77 |
+
generate_kwargs={"temperature": 0.7, "top_p": 0.95},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
)
|
79 |
|
80 |
+
query_engine = NLSQLTableQueryEngine(
|
81 |
+
sql_database=sql_database,
|
82 |
+
tables=["machine_current_log"],
|
83 |
+
llm=llm
|
84 |
+
)
|
85 |
|
86 |
+
def natural_language_query(question: str):
|
87 |
+
try:
|
88 |
+
response = query_engine.query(question)
|
89 |
+
return str(response)
|
90 |
+
except Exception as e:
|
91 |
+
logger.error(f"Query error: {e}")
|
92 |
+
return f"Error processing query: {str(e)}"
|
93 |
|
94 |
if __name__ == "__main__":
|
95 |
+
# Natural language query examples
|
96 |
+
print("\nNatural Language Query Examples:")
|
97 |
+
questions = [
|
98 |
+
"What is the average CT1 reading?",
|
99 |
+
"Which machine has the highest total current?",
|
100 |
+
"Show me the latest fault status for each machine"
|
101 |
+
]
|
102 |
+
|
103 |
+
for question in questions:
|
104 |
+
print(f"\nQuestion: {question}")
|
105 |
+
print("Answer:", natural_language_query(question))
|