khanhamzawiser commited on
Commit
13e409a
·
verified ·
1 Parent(s): b4e2225

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +89 -56
app.py CHANGED
@@ -1,72 +1,105 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
- demo = gr.ChatInterface(..., title="Wiser AI Assistant")
 
10
 
 
11
 
12
- def respond(
13
- message,
14
- history: list[tuple[str, str]],
15
- system_message,
16
- max_tokens,
17
- temperature,
18
- top_p,
19
- ):
20
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
 
21
 
22
- for val in history:
23
- if val[0]:
24
- messages.append({"role": "user", "content": val[0]})
25
- if val[1]:
26
- messages.append({"role": "assistant", "content": val[1]})
27
 
28
- messages.append({"role": "user", "content": message})
 
 
 
 
29
 
30
- response = ""
 
 
 
 
 
31
 
32
- for message in client.chat_completion(
33
- messages,
34
- max_tokens=max_tokens,
35
- stream=True,
36
- temperature=temperature,
37
- top_p=top_p,
38
- ):
39
- token = message.choices[0].delta.content
40
 
41
- response += token
42
- yield response
 
 
 
 
 
43
 
 
 
44
 
45
- """
46
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
47
- """
48
- demo = gr.ChatInterface(
49
- respond,
50
- title="🤖 Wiser AI Assistant",
51
- description="Your smart manufacturing assistant powered by Wiser Machines. Ask me anything about automation, productivity, factory operations, or how Wiser can help!",
52
- additional_inputs=[
53
- gr.Textbox(value="You are Wiser, an AI assistant specializing in smart manufacturing and factory automation. Respond clearly, concisely, and use real-world manufacturing examples when needed.", label="System message"),
54
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
55
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
56
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
57
- ],
58
  )
59
 
 
 
 
 
 
60
 
61
- demo = gr.ChatInterface(..., title="Wiser AI Assistant")
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- with gr.Blocks() as demo:
65
- gr.Markdown("## Welcome to Wiser AI Assistant")
66
- gr.Markdown("Ask questions about factory automation, productivity, or how Wiser Machines can help streamline your operations.")
67
- chat = gr.ChatInterface(
68
- respond,
69
- additional_inputs=[...], # your sliders and system message
70
- )
71
-
72
- demo.launch()
 
 
 
1
+ from sqlalchemy import create_engine, Table, Column, String, Integer, Float, Text, TIMESTAMP, MetaData
2
+ from sqlalchemy.dialects.postgresql import UUID
3
+ from sqlalchemy import text
4
+ from llama_index.core import SQLDatabase
5
+ from llama_index.core.query_engine import NLSQLTableQueryEngine
6
+ from llama_index.llms.huggingface import HuggingFaceLLM
7
+ import logging
8
 
9
+ # Set up logging
10
+ logging.basicConfig(level=logging.DEBUG)
11
+ logger = logging.getLogger(__name__)
 
12
 
13
+ # PostgreSQL DB connection (converted from JDBC)
14
+ engine = create_engine("postgresql+psycopg2://postgres:password@localhost:5434/postgres")
15
 
16
+ metadata_obj = MetaData()
17
 
18
+ # Define the machine_current_log table
19
+ machine_current_log_table = Table(
20
+ "machine_current_log",
21
+ metadata_obj,
22
+ Column("mac", Text, primary_key=True),
23
+ Column("created_at", TIMESTAMP(timezone=True), primary_key=True),
24
+ Column("CT1", Float),
25
+ Column("CT2", Float),
26
+ Column("CT3", Float),
27
+ Column("CT_Avg", Float),
28
+ Column("total_current", Float),
29
+ Column("state", Text),
30
+ Column("state_duration", Integer),
31
+ Column("fault_status", Text),
32
+ Column("fw_version", Text),
33
+ Column("machineId", UUID),
34
+ Column("hi", Text),
35
+ )
36
 
37
+ # Create the table
38
+ metadata_obj.create_all(engine)
 
 
 
39
 
40
+ # Convert to TimescaleDB hypertable
41
+ with engine.connect() as conn:
42
+ conn.execute(text("SELECT create_hypertable('machine_current_log', 'created_at', if_not_exists => TRUE);"))
43
+ print("TimescaleDB hypertable created")
44
+ conn.commit()
45
 
46
+ # Query 1: Get all MAC addresses
47
+ print("\nQuerying all MAC addresses:")
48
+ with engine.connect() as con:
49
+ rows = con.execute(text("SELECT mac from machine_current_log"))
50
+ for row in rows:
51
+ print(row)
52
 
53
+ # Query 2: Get all data and count
54
+ print("\nQuerying all data and count:")
55
+ stmt = text("""
56
+ SELECT mac, created_at, CT1, CT2, CT3, CT_Avg,
57
+ total_current, state, state_duration, fault_status,
58
+ fw_version, machineId
59
+ FROM machine_current_log
60
+ """)
61
 
62
+ with engine.connect() as connection:
63
+ print("hello")
64
+ count_stmt = text("SELECT COUNT(*) FROM machine_current_log")
65
+ count = connection.execute(count_stmt).scalar()
66
+ print(f"Total number of rows in table: {count}")
67
+ results = connection.execute(stmt).fetchall()
68
+ print(results)
69
 
70
+ # Set up LlamaIndex natural language querying
71
+ sql_database = SQLDatabase(engine)
72
 
73
+ llm = HuggingFaceLLM(
74
+ model_name="HuggingFaceH4/zephyr-7b-beta",
75
+ context_window=2048,
76
+ max_new_tokens=256,
77
+ generate_kwargs={"temperature": 0.7, "top_p": 0.95},
 
 
 
 
 
 
 
 
78
  )
79
 
80
+ query_engine = NLSQLTableQueryEngine(
81
+ sql_database=sql_database,
82
+ tables=["machine_current_log"],
83
+ llm=llm
84
+ )
85
 
86
+ def natural_language_query(question: str):
87
+ try:
88
+ response = query_engine.query(question)
89
+ return str(response)
90
+ except Exception as e:
91
+ logger.error(f"Query error: {e}")
92
+ return f"Error processing query: {str(e)}"
93
 
94
  if __name__ == "__main__":
95
+ # Natural language query examples
96
+ print("\nNatural Language Query Examples:")
97
+ questions = [
98
+ "What is the average CT1 reading?",
99
+ "Which machine has the highest total current?",
100
+ "Show me the latest fault status for each machine"
101
+ ]
102
+
103
+ for question in questions:
104
+ print(f"\nQuestion: {question}")
105
+ print("Answer:", natural_language_query(question))