khanhamzawiser commited on
Commit
b4e2225
·
verified ·
1 Parent(s): 55741eb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -89
app.py CHANGED
@@ -1,105 +1,72 @@
1
- from sqlalchemy import create_engine, Table, Column, String, Integer, Float, Text, TIMESTAMP, MetaData
2
- from sqlalchemy.dialects.postgresql import UUID
3
- from sqlalchemy import text
4
- from llama_index.core import SQLDatabase
5
- from llama_index.core.query_engine import NLSQLTableQueryEngine
6
- from llama_index.llms.huggingface import HuggingFaceLLM
7
- import logging
8
 
9
- # Set up logging
10
- logging.basicConfig(level=logging.DEBUG)
11
- logger = logging.getLogger(__name__)
 
12
 
13
- # PostgreSQL DB connection (converted from JDBC)
14
- engine = create_engine("postgresql+psycopg2://postgres:password@localhost:5434/postgres")
15
 
16
- metadata_obj = MetaData()
17
 
18
- # Define the machine_current_log table
19
- machine_current_log_table = Table(
20
- "machine_current_log",
21
- metadata_obj,
22
- Column("mac", Text, primary_key=True),
23
- Column("created_at", TIMESTAMP(timezone=True), primary_key=True),
24
- Column("CT1", Float),
25
- Column("CT2", Float),
26
- Column("CT3", Float),
27
- Column("CT_Avg", Float),
28
- Column("total_current", Float),
29
- Column("state", Text),
30
- Column("state_duration", Integer),
31
- Column("fault_status", Text),
32
- Column("fw_version", Text),
33
- Column("machineId", UUID),
34
- Column("hi", Text),
35
- )
36
 
37
- # Create the table
38
- metadata_obj.create_all(engine)
 
 
 
39
 
40
- # Convert to TimescaleDB hypertable
41
- with engine.connect() as conn:
42
- conn.execute(text("SELECT create_hypertable('machine_current_log', 'created_at', if_not_exists => TRUE);"))
43
- print("TimescaleDB hypertable created")
44
- conn.commit()
45
 
46
- # Query 1: Get all MAC addresses
47
- print("\nQuerying all MAC addresses:")
48
- with engine.connect() as con:
49
- rows = con.execute(text("SELECT mac from machine_current_log"))
50
- for row in rows:
51
- print(row)
52
 
53
- # Query 2: Get all data and count
54
- print("\nQuerying all data and count:")
55
- stmt = text("""
56
- SELECT mac, created_at, CT1, CT2, CT3, CT_Avg,
57
- total_current, state, state_duration, fault_status,
58
- fw_version, machineId
59
- FROM machine_current_log
60
- """)
61
 
62
- with engine.connect() as connection:
63
- print("hello")
64
- count_stmt = text("SELECT COUNT(*) FROM machine_current_log")
65
- count = connection.execute(count_stmt).scalar()
66
- print(f"Total number of rows in table: {count}")
67
- results = connection.execute(stmt).fetchall()
68
- print(results)
69
 
70
- # Set up LlamaIndex natural language querying
71
- sql_database = SQLDatabase(engine)
72
 
73
- llm = HuggingFaceLLM(
74
- model_name="HuggingFaceH4/zephyr-7b-beta",
75
- context_window=2048,
76
- max_new_tokens=256,
77
- generate_kwargs={"temperature": 0.7, "top_p": 0.95},
 
 
 
 
 
 
 
 
78
  )
79
 
80
- query_engine = NLSQLTableQueryEngine(
81
- sql_database=sql_database,
82
- tables=["machine_current_log"],
83
- llm=llm
84
- )
85
 
86
- def natural_language_query(question: str):
87
- try:
88
- response = query_engine.query(question)
89
- return str(response)
90
- except Exception as e:
91
- logger.error(f"Query error: {e}")
92
- return f"Error processing query: {str(e)}"
93
 
94
  if __name__ == "__main__":
95
- # Natural language query examples
96
- print("\nNatural Language Query Examples:")
97
- questions = [
98
- "What is the average CT1 reading?",
99
- "Which machine has the highest total current?",
100
- "Show me the latest fault status for each machine"
101
- ]
102
-
103
- for question in questions:
104
- print(f"\nQuestion: {question}")
105
- print("Answer:", natural_language_query(question))
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
 
 
 
 
 
3
 
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
+ demo = gr.ChatInterface(..., title="Wiser AI Assistant")
 
10
 
 
11
 
12
+ def respond(
13
+ message,
14
+ history: list[tuple[str, str]],
15
+ system_message,
16
+ max_tokens,
17
+ temperature,
18
+ top_p,
19
+ ):
20
+ messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
 
21
 
22
+ for val in history:
23
+ if val[0]:
24
+ messages.append({"role": "user", "content": val[0]})
25
+ if val[1]:
26
+ messages.append({"role": "assistant", "content": val[1]})
27
 
28
+ messages.append({"role": "user", "content": message})
 
 
 
 
29
 
30
+ response = ""
 
 
 
 
 
31
 
32
+ for message in client.chat_completion(
33
+ messages,
34
+ max_tokens=max_tokens,
35
+ stream=True,
36
+ temperature=temperature,
37
+ top_p=top_p,
38
+ ):
39
+ token = message.choices[0].delta.content
40
 
41
+ response += token
42
+ yield response
 
 
 
 
 
43
 
 
 
44
 
45
+ """
46
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
47
+ """
48
+ demo = gr.ChatInterface(
49
+ respond,
50
+ title="🤖 Wiser AI Assistant",
51
+ description="Your smart manufacturing assistant powered by Wiser Machines. Ask me anything about automation, productivity, factory operations, or how Wiser can help!",
52
+ additional_inputs=[
53
+ gr.Textbox(value="You are Wiser, an AI assistant specializing in smart manufacturing and factory automation. Respond clearly, concisely, and use real-world manufacturing examples when needed.", label="System message"),
54
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
55
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
56
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
57
+ ],
58
  )
59
 
 
 
 
 
 
60
 
61
+ demo = gr.ChatInterface(..., title="Wiser AI Assistant")
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
+ with gr.Blocks() as demo:
65
+ gr.Markdown("## Welcome to Wiser AI Assistant")
66
+ gr.Markdown("Ask questions about factory automation, productivity, or how Wiser Machines can help streamline your operations.")
67
+ chat = gr.ChatInterface(
68
+ respond,
69
+ additional_inputs=[...], # your sliders and system message
70
+ )
71
+
72
+ demo.launch()